PRINCIPALES maladies NEUROMUSCULAIRES

Après un bref rappel de la structure de l’unité motrice et des différents modes de transmission génétique, ce document présente une description succincte des principales maladies neuromusculaires et de leur prise en charge.

Pour chaque groupe de maladies, la zone de l’unité motrice et dans certains cas les protéines concernées sont indiquées dans une vignette.

La codification Orphanet (codes ORPHA) et la codification de la base OMIM Online Mendelian Inheritance In Man (codes MIM) des maladies sont indiquées quand elles existent.

Les groupes de maladies neuromusculaires sont présentés par ordre alphabétique. L’index, en fin de document, présente une liste alphabétique de noms de maladies qui renvoient au groupe de maladies neuromusculaires correspondant. Les protéines et les gènes sont également répertoriés dans des index séparés.
SOMMAIRE

Les maladies neuromusculaires ... 6
- Unité motrice .. 6
- Protéines impliquées dans les maladies neuromusculaires 6

Modes de transmission .. 9
- Transmission mendélienne ... 9
- Transmission maternelle .. 10

Amyotrophies spinales proximales (ou SMA pour Spinal Muscular Atrophy) ... 11
- Amyotrophie spinale infantile type I (maladie de Werdnig-Hoffman) 11
- Amyotrophie spinale infantile type II .. 11
- Amyotrophie spinale infantile type III (maladie de Kugelberg-Welander) 11
- Amyotrophie spinale de l’adulte type IV .. 12

Canalopathies musculaires - Paralysies périodiques 12
- Adynamie épisodique de Gamstorp (paralysie périodique hyperkaliémique), paralysie périodique hypokaliémique de type II et maladie de Westphal (paralysie périodique hypokaliémique) ... 12

Canalopathies musculaires - Syndromes myotoniques non dystrophiques ... 13
- Myotonie congénitale de Becker ... 13
- Myotonie congénitale de Thomsen ... 13
- Myotonie chondrodystrophique ou syndrome de Schwartz-Jampel 13
- Paramyotonie de Von Eulenburg .. 14

Dystrophies musculaires congénitales (DMC) sans signe d’atteinte du système nerveux central ... 14
- DMC « mérosine négative » de type IA (MDC1A) 15
- Dystroglycanopathies secondaires .. 15
 Dystrophie musculaire congénitale de type 1B (MDC1B) 15
 Dystrophie musculaire congénitale de type 1C (MDC1C) 15
- Syndrome d’Ullrich (UCMD) .. 16
- DMC avec colonne raide de type 1 (RSMD1) ou sélénopathie 16
- DMC par mutation du gène LMNA (L-CMD) ou laminopathie 16
- Dystrophie musculaire congénitale avec déficit en intégrine alpha-7 16

Dystrophies musculaires congénitales (DMC) avec atteinte du système nerveux central (ou alpha-dystroglycanopathies) ... 17
- Dystrophie musculaire de Fukuyama ... 17
- Syndrome muscle-œil-cerveau ou MEB (Muscle-Eye-Brain) 17
- Syndrome de Walker-Warburg .. 17
- DMC avec mutation du gène LARGE .. 18

Dystrophies musculaires d’Emery-Dreifuss (DMED) 19
Dystrophies musculaires des ceintures (LGMD pour Limb Girdle Muscular Dystrophy) autosomiques récessives LGMD2
- Calpainopathie (LGMD2A) ... 19
- Dysferlinopathie (LGMD2B) ... 21
- Sarcoglycanopathies (γ-sarcoglycanopathie ou LGMD2C, α-sarcoglycanopathie ou LGMD2D, β-sarcoglycanopathie ou LGMD2E, δ-sarcoglycanopathie ou LGMD2F) .. 21
- Dystrophie musculaire des ceintures LGMD2G .. 21
- Dystrophie musculaire des ceintures LGMD2H .. 21
- Dystrophie musculaire des ceintures LGMD2I .. 22
- Dystrophie musculaire des ceintures LGMD2J .. 22
- Dystrophie musculaire des ceintures LGMD2K .. 22
- Dystrophie musculaire des ceintures LGMD2L .. 22
- Dystrophie musculaire des ceintures LGMD2M .. 22
- Dystrophie musculaire des ceintures LGMD2N .. 22
- Dystrophie musculaire des ceintures LGMD2O .. 23
- Dystrophie musculaire des ceintures LGMD2P .. 23
- Dystrophie musculaire des ceintures LGMD2Q .. 23
- Dystrophie musculaire des ceintures LGMD2R .. 23
- Dystrophie musculaire des ceintures LGMD2S .. 23
- Dystrophie musculaire des ceintures LGMD2T .. 23
- Dystrophie musculaire des ceintures LGMD2U .. 23
- Dystrophie musculaire des ceintures LGMD2V .. 23
- Dystrophie musculaire des ceintures LGMD2W .. 24

Dystrophies musculaires des ceintures (LGMD pour Limb Girdle Muscular Dystrophy) autosomiques dominantes LGMD1 .. 24
- Dystrophie musculaire des ceintures LGMD1A (myotilinopathie) .. 24
- Dystrophie musculaire des ceintures LGMD1 B .. 24
- Dystrophie musculaire des ceintures LGMD1C .. 24
- Dystrophie musculaire des ceintures LGMD1D .. 24
- Dystrophie musculaire des ceintures LGMD1E .. 25
- Dystrophie musculaire des ceintures LGMD1 F .. 25
- Dystrophie musculaire des ceintures LGMD1G .. 25
- Dystrophie musculaire des ceintures LGMD1H .. 25

Dystrophie musculaire facio-scapulo-humérale (FSHD1 et FSHD2) 26

Dystrophie musculaire oculopharyngée (DMOP) ... 27

Dystrophies myotoniques ... 27
- Dystrophie myotonique de Steinert ou dystrophie myotonique de type 1 27
- Dystrophie myotonique de type 2 (dite aussi PROMM) 29

Dystrophinopathies ... 29
- Dystrophie musculaire de Duchenne (DMD) .. 30
- Dystrophie musculaire de Becker (DMB) .. 30
- Formes mineures de dystrophinopathies .. 30

Fibrodysplasie ossifiante progressive (FOP) .. 31
Glycogénoses musculaires ... 31
- Maladie de Pompe ou glycogénose de type II .. 31
- Maladie de Cori (ou maladie de Forbes) ou glycogénose de type III 32
- Maladie d’Andersen (ou amylopectine) ou glycogénose de type IV 33
- Maladie de McArdle ou glycogénose de type V .. 33
- Maladie de Tarui ou glycogénose de type VII .. 33

Lipidoses musculaires .. 34
- Déficit en carnitine .. 34
- Déficit en carnitine-palmitoyl transtérase de type II (CPT II) 34
- Déficit en acyl CoA déshydrogénase ... 34
- Déficit en VLCAD (Very Long Chain Acyl-CoA Dehydrogenase) 35

Maladies de Charcot-Marie-Tooth (CMT) .. 35
- Maladies de Charcot-Mane-Tooth de type 1 (CMT1) 36
- Maladies de Charcot-Marie-Tooth de type 4 (CMT4) 36
- Maladies de Charcot-Marie-Tooth de type 2 (CMT2) 36
- Maladies de Charcot-Marie-Tooth liées à l’X (CMTX) 37
- Maladies de Charcot-Mane-Tooth de type intermédiaire (DI-CMT) 37

Maladies inflammatoires du muscle .. 38
- Dermatomyosite ... 38
- Polymyosite .. 38
- Myosite à inclusions .. 38

Myasthénie auto-immune .. 39

Myopathies congénitales ... 40
- Myopathie congénitale avec bâtonnets ou nemaline myopathy 41
- Myopathie congénitale avec cores centraux .. 41
- Myopathie congénitale myotubulaire ... 42
- Myopathie congénitale centronucléaire ... 42
- Myopathie congénitale avec multiminicores ... 42
- Myopathie congénitale avec surcharge en myosine ou myopathie à corps hyalins 43
- Myopathie congénitale avec atrophie musculaire et hypertrophie généralisée 43

Myopathies distales ... 43
- Myopathie de Miyoshi .. 43
- Déficit en dysferline ... 44
- Déficit en anoctamine 5 .. 44
- Dystrophie musculaire tibiale de type Udd ou titinopathie 44
- Myopathie distale de type Nonaka .. 45
- Myopathie distale de type Welander ... 45
- Myopathie distale de type Laing ... 45
- Myopathie distale à début tardif de type Markesbery-Griggs 45
- Myopathie distale avec déficit en filamine C ... 46
- Myopathie distale avec faiblesse des cordes vocales et du pharynx 46
- Myopathie distale à début précoce ... 46
- Myopathie distale avec déficit en dynamine 2 .. 46
- Myopathie distale avec déficit en VCP ... 46
- Myopathie distale avec déficit en nébuline .. 46
- Myopathie distale avec déficit en cavéoline-3 ... 46
- Myopathie distale avec déficit en myotiline .. 46
Principales maladies neuromusculaires

Myopathies mitochondriales
- Syndrome de MELAS
- Syndrome de MERRF
- Syndrome de Kearns-Sayre

Myopathies myofibrillaires
- Desminopathie
- Zaspopathie
- Apha-B cristallinopathie
- Autres formes

Syndromes myasthéniques congénitaux (SMC)
- Syndromes myasthéniques congénitaux pré-synaptiques
- Syndromes myasthéniques congénitaux synaptiques
- Syndromes myasthéniques congénitaux post-synaptiques

Index des maladies

Index des protéines

Index des gènes
Les **MALADIES NEUROMUSCULAIRES** sont dues à des atteintes de l’unité motrice

Le terme de maladie neuromusculaire désigne des atteintes de l’unité motrice, primitives ou secondaires, isolées ou associées. Nous ne considérons ici que les maladies neuromusculaires primitives de l’unité motrice. Ainsi sont exclues les atteintes secondaires musculaires (toxiques, endocriniennes, médicamenteuses...). Sont également exclues des maladies neuromusculaires les tableaux où les atteintes du système nerveux central sont au premier plan et sont symptomatiques. Mais les frontières sont souvent floues. La plupart des maladies primitives de l’unité motrice sont d’origine génétique. Certaines sont d’origine auto-immune.

Dystrophie musculaire versus myopathie

• Dystrophies musculaires : ensemble d'affections d’origine génétique, liées à une dégénérescence primitive du tissu musculaire. Les dystrophies musculaires affectent les muscles qui ont atteint leur maturité structurelle et qui sont le siège d’une nécrose aboutissant à la destruction de la fibre musculaire, avec mise en place des mécanismes de régénération musculaire visant à restaurer l’intégrité anatomique et physiologique du tissu atteint.

• Myopathie : nom générique désignant toutes les affections du tissu musculaire, qu’elles soient primitives ou secondaires.

Si l’approche clinique reste essentielle, le diagnostic de certitude de la plupart des maladies neuromusculaires s’appuie sur des techniques de biologie moléculaire de plus en plus sophistiquées : analyse de la protéine dont le défaut ou l’absence est responsable de la maladie, ou identification de l’anomalie génétique en cause au niveau de l’ADN ou de l’ARN. Le conseil génétique permet d’évaluer le risque de récurrence d’une maladie génétique dans une famille et peut déboucher sur un diagnostic prénatal.

Si la recherche du traitement des causes de ces atteintes de l’unité motrice n’a pas encore abouti, le traitement des désordres qui en résultent (rétractions musculaires, déformations orthopédiques, insuffisance respiratoire, parfois cardiaque, troubles de déglutition et difficultés digestives, douleurs, désordres immunitaires…) a modifié l’espérance et la qualité de vie des personnes atteintes de ces maladies : une prise en charge précoce, régulière et personnalisée limite les conséquences vitales et fonctionnelles des maladies neuromusculaires ; l’utilisation d’aides techniques compensant l’atteinte des fonctions motrices, vise à préserver la communication et l’autonomie.

Unité motrice

Le motoneurone et les fibres musculaires qu’il innerve constituent une unité motrice. Le nombre de fibres musculaires dans une unité motrice varie selon l’importance du muscle : 3 à 6 fibres musculaires par unité motrice pour les muscles oculomoteurs, plusieurs milliers pour les muscles des membres. Au niveau du biceps brachial, un motoneurone innerve et active de façon synchrone une centaine de fibres musculaires environ. L’unité motrice est l’unité élémentaire de contraction d’un muscle. Lors d’un mouvement, la force développée par le muscle est liée au nombre d’unités motrices qui se contractent. Plus le nombre d’unités motrices se contractant simultanément est grand, plus la force développée est importante.

Protéines impliquées dans les maladies neuromusculaires

Chaque fibre musculaire (ou cellule musculaire) est constituée de nombreuses myofibrilles disposées parallèlement à son grand axe et s’étendent sur toute sa longueur.
Différents complexes protéiques relient les myofibrilles au sarcolemme (membrane plasmique de la cellule musculaire) et à la matrice extracellulaire.
Dans le sarcolemme, sont localisées la dystrophine, les α-, β-, δ- et γ-sarcoglycanes, la dysferline et la cavéline-3. La dystrophine est associée à des protéines (dystroglycanes, dystrobrévine, syntrophines) qui forment un complexe reliant, à travers le sarcolemme, l’extérieur (matrice extracellulaire) et l’intérieur (cytosquelette) de la fibre musculaire.
Dans la matrice extra-cellulaire, se trouvent la laminine α2 et le collagène VI. Dans la myofibrille, se trouvent l’actine, la tropomyosine, la troponine (myofilament fin) et la myosine (myofilament épais).
Des protéines interviennent dans la stabilité du sarcomère : la téléthonine, la myotilin, la desmine, la titine et la nébuline. La cohésion des myofibrilles entre elles est maintenue par les filaments de desmine, qui assurent aussi le rôle de lien entre les myofibrilles d’une part au sarcolemme, et d’autre part à la membrane nucléaire externe.
La fukutine, ainsi que d’autres protéines (FKRP, POMGNT1, POMT1, POMT2, LARGE) sont localisées au niveau de l’appareil de Golgi. La sélénoprotéine est localisée dans le réticulum endoplasmique.
Protéines impliquées dans les maladies neuromusculaires.
Le sarcolemme contient un ensemble de protéines spécifiques - en particulier le complexe de la dystrophine et des protéines associées (membranaires et transmembranaires) - qui interviennent dans le fonctionnement de la fibre musculaire.

Protéines constitutives des myofibrilles.
Chaque myofibrille est une succession d’unités contractiles, les sarcomères, dont l’agencement ordonné dessine une striation régulière tout le long de la myofibrille. Chaque sarcomère est formé de myofilaments fins (actine, tropomyosine, troponine) entourant des myofilaments épais (myosine).
Modes DE TRANSMISSION

Selon le mode de transmission de la maladie, la descendance n’est pas exposée au même risque.

Transmission mendélienne

Certaines maladies neuromusculaires d’origine génétique sont dues à la présence d’anomalies au niveau d’un seul gène : elles sont monogéniques.

Le gène responsable de la maladie est porté par l’une des 23 paires de chromosomes situés dans le noyau des cellules.

Les chromosomes d’une même paire sont identiques (même taille, même forme…), l’un provient du père, l’autre de la mère. Seuls les chromosomes de la 23e paire sont différents selon que l’on est un homme ou une femme : les femmes portent deux chromosomes X, elles sont XX ; les hommes portent un chromosome X et un chromosome Y, ils sont XY. Ce sont les “chromosomes sexuels”. Les 22 autres paires de chromosomes, semblables chez l’homme et chez la femme sont appelés les “autosomes”.

Les maladies neuromusculaires monogéniques se transmettent, généralement, selon les lois de l’hérédité mendélienne. Lorsque l’anomalie génétique est située sur l’une des 22 paires d’autosomes, la transmission est autosomique. Lorsque l’anomalie génétique est située sur le chromosome X, la maladie est dite liée à l’X. Elle est le plus souvent récessive et s’exprime essentiellement chez l’homme du fait de la présence d’un seul chromosome X.

Transmission autosomique récessive.

La personne malade a reçu un chromosome porteur de l’anomalie génétique. Ce chromosome a été transmis par le parent malade (père ou mère). L’atteinte d’un seul des deux parents par la maladie suffit à transmettre cette maladie à l’enfant avec un risque de 1/4 (25 %) à chaque grossesse. Si l’enfant n’hérite pas de la maladie, la transmission est interrompue dans cette branche de la famille.

Transmission autosomique dominante.

La personne malade a reçu un chromosome porteur de l’anomalie génétique. Ce chromosome a été transmis par le parent malade (père ou mère). L’atteinte d’un seul des deux parents par la maladie suffit à transmettre cette maladie à l’enfant avec un risque de 1/2 (50 %) à chaque grossesse.

Transmission récessive liée à l’X.

La maladie ne se manifeste que si l’anomalie génétique est portée par les deux chromosomes X chez la femme ou par l’unique chromosome X chez l’homme. Une femme porteuse d’une anomalie génétique sur un chromosome X n’est pas malade mais la maladie peut se transmettre par elle. Chacun de ses garçons a un risque sur 2 d’être malade et chacune de ses filles a un risque sur 2 d’être transmettrice.

Transmission autosomique récessive.

La personne malade a reçu deux chromosomes porteurs de l’anomalie génétique. Un chromosome a été transmis par le père et l’autre par la mère. Pour les parents, le risque de transmettre une maladie autosomique récessive est de 1/4 (25 %) à chaque grossesse. Les enfants qui n’ont reçu qu’un chromosome porteur de l’anomalie génétique, de leur père ou de leur mère, ne sont pas malades.
Transmission maternelle

Les mitochondries possédant leur propre ADN, le gène muté peut se trouver sur l’ADN mitochondrial. La transmission est alors maternelle.

Les maladies mitochondriales ne se transmettent pas toutes selon les lois de l’hérité-dité mendélienne : celles-ci ne s’appliquent qu’aux gènes portés par les chromosomes du noyau cellulaire. Si la majorité des gènes est située dans le noyau de la cellule (ADN nucléaire), quelques-uns sont localisés dans les mitochondries (ADN mitochondrial ou ADNmt). Ils codent des protéines entrant dans la constitution des mitochondries. L’ADN mitochondrial est exclusivement d’origine maternelle, car seules les mères transmettent leur ADN mitochondrial à leur descendance (hérédité dite maternelle).

Transmission maternelle.

Lorsqu’il existe une altération de l’ADN mitochondrial, elle ne concerne qu’une partie des mitochondries de la cellule (hétéroplasme). Dans chaque cellule coexistent, en proportion variable, des mitochondries dont l’ADNmt est porteur de l’anomalie génétique (ADNmt muté) et des mitochondries dont l’ADNmt est normal. Au fil des divisions cellulaires, la répartition des mitochondries mutées se fait au hasard.
AMYOTROPHIES SPINALES PROXIMALES (ou SMA pour *Spinal muscular atrophy*)

ORPHA 70 - MIM 253300 / 253550 / 253400 / 271150

![Diagram of spinal cord](image)

Maladies dégénératives du motoneurone à transmission autosomique récessive, dues à un déficit en protéine SMN ou « Survival Motor Neuron », protéine de survie du motoneurone (gène *SMN1* localisé sur le chromosome 5). On estime leur incidence annuelle à environ 1 nouveau cas pour 5 000 naissances et leur prévalence à 3/100 000.

- Dégénérescence des motoneurones de la moelle épinière : l'ordre de contraction n'est plus acheminé jusqu'aux fibres musculaires
- Amyotrophies spinales proximales liées au chromosome 5 touchant préférentiellement les muscles proximaux ; distinctes des amyotrophies spinales dites “distales” liées à d'autres gènes
- Diagnostic essentiellement clinique confirmé par la génétique moléculaire
- Possibilité de diagnostic génétique (hétérozygotie) pour la fratrie et le conjoint du patient atteint
- Diagnostic prénatal possible si les deux parents sont hétérozygotes
- Recherche intense et féconde : études cliniques ; projets visant à améliorer les connaissances sur la SMA, à développer des outils d'évaluation pour les essais cliniques et à évaluer les possibilités d'application de la thérapie génique et/ou pharmacologique dans la SMA
- Plusieurs types d'amyotrophies spinales proximales en fonction de l'âge de début des signes cliniques et des critères fonctionnels
- Plus le début est tardif, moins l'évolution est sévère
- Des facteurs génétiques modificateurs sont à l'origine des différents types d'amyotrophies spinales proximales liées au gène *SMN1*.

Amyotrophie spinale infantile type I (maladie de Werdnig-Hoffman)

ORPHA 83330 - MIM 253300

- Début entre 0 et 6 mois
- Type I précoce : l'enfant n'a jamais tenu sa tête
- Type I bis : a tenu sa tête
- Hypotonie (enfant mou) globale et sévère
- Faiblesse musculaire des quatre membres
- Atteinte des muscles respiratoires, respiration de type abdominale, aplatissement thoracique (avec risque de déformation)
- Insuffisance respiratoire très sévère
- Fasciculations linguales
- Évolution sévère malgré la prise en charge spécialisée
- Absence d'acquisition du langage
- La très grande majorité des enfants décède avant l'âge de 2 ans
- Survie prolongée possible avec ventilation assistée (par trachéotomie) et/ou assistance nutritionnelle (gastros-tomie)
- Prévalence : 1,25/100 000.

Amyotrophie spinale infantile type II

ORPHA 83418 - MIM 253550

- Début après l'acquisition de la station assise et avant l'âge de la marche (entre 6 et 18 mois)
- Faiblesse symétrique des muscles proximaux et du tronc
- Atteinte paralytique variable (pour chaque enfant), prédominant aux membres inférieurs, dans de très rares cas acquisition d'une marche précaire et peu fonctionnelle
- Tenue de la tête conservée ainsi qu'une motricité des membres supérieurs
- Atteinte des muscles intercostaux plus ou moins importante
- Une prise en charge respiratoire et orthopédique précoce conditionne la qualité de vie
- Prévalence : 1,42/100 000.

Amyotrophie spinale infantile type III (maladie de Kugelberg-Welander)

ORPHA 83419 – MIM 253400

- Début après l'âge de la marche et de la course (après 18 mois) et jusqu'à la fin...
Principales maladies neuromusculaires

SAVOIR & COMPRENDRE

FICHE TECHNIQUE

12

| AFM-Téléthon | Janvier 2015 |

- **de l’adolescence** • Faiblesse symétrique des muscles de la racine des membres prédominant aux membres inférieurs, responsable d’une démarche dandinante • Difficulté à se relever du sol et à monter les escaliers • Tableau pseudomyopathique fréquent • Chutes fréquentes • Fatigabilité anormale • Complications respiratoires et orthopédiques • Évolution variable, lentement progressive (plusieurs années) ou rapide (quelques mois) avec perte de la marche • Prévalence : 0,26/100 000.

Amyotrophie spinale de l’adulte type IV

ORPHA 83420 - MIM 271150

- Début à l’âge adulte • Les manifestations cliniques surviennent après l’âge de 20 ans • Faiblesse musculaire lentement progressive prédominant à la racine des membres avec démarche dandinante • Évolution variable entraînant une gêne croissante à courir puis à marcher • Perte de la marche inconstante et généralement tardive • Prévalence : 0,32/100 000.

Prise en charge

- Conseil génétique • Kinésithérapie adaptée (massages, mobilisations, postures, relaxateurs de pression) et appareillage pour lutter contre les rétractions musculo-tendineuses, les déformations des membres, de la colonne vertébrale et de la cage thoracique • Assistance ventilatoire • Chirurgie du rachis • Aides techniques (fauteuil roulant électrique, informatique...) pour assurer la meilleure autonomie possible.

CANALOPATHIES musculaires

Paralysies périodiques

ORPHA 682 / 681 / 684 - MIM 170500 / 170400 / 613345 / 168300

- **Maladies génétiques rares le plus souvent autosomiques dominantes**: Liées à des anomalies des canaux ioniques membranaires musculaires modifiant l’excitabilité de la cellule musculaire, se traduisant par des accès de paralysie (pendant lesquels le muscle n’est pas excitable donc ne se contracte pas) ou par un retard de la décontraction musculaire (myotonie). On estime la prévalence des paralysies périodiques hyperkaliémiques à 0,5/100 000 et celle des paralysies périodiques hypokaliémiques à 1/100 000.

Adynamie épisodique de Gamstorp (paralysie périodique hyperkaliémique), paralysie périodique hypokaliémique de type II et maladie de Westphal (paralysie périodique hypokaliémique)

- Maladies génétiques à transmission autosomique dominante • L’adynamie épisodique de Gamstorp et la paralysie périodique hypokaliémique de type II sont dues à un déficit en sous-unité • du canal sodium musculaire (gène SCN4A localisé sur le chromosome 17) • La maladie de Westphal est due à un déficit en sous-unité du récepteur aux dihydropyridines, canal ionique permettant le passage des ions calcium à travers la membrane de la cellule musculaire (gène CACNL1A3 localisé sur le chromosome 1) • Ces maladies concernent moins d’1 personne sur 100 000 • Attaques de paralysies brèves mais fréquentes, cédant le plus souvent spontanément • Accès de paralysie débutant à un âge précoce (première décennie). Ils commencent par les extrémités et se généralisent progressivement ; déclenchés par le repos brusque après un exercice, un repas très salé et/ou riche en sucres, une exposition au froid, une poussée fébrile, un traumatisme physique ou psychique • Souvent associés à un phénomène myotonique • En général, pas de gêne entre les crises • Amélioration...
Principales maladies neuromusculaires

SAVOIR & COMPRENDRE

FICHE TECHNIQUE

Prise en charge

• Conseil génétique • Traitement de la crise • Habitudes de vie : exercice musculaire modéré sans arrêt brutal, éviter le froid • Régime alimentaire et traitement médicamenteux permettent de prévenir les crises ou de diminuer leur fréquence.

CANALOPATHIES musculaires
Syndromes myotoniques non dystrophiques

Maladies génétiques rares autosomiques dominantes ou autosomiques récessives. Liées à des anomalies des canaux ioniques membranaires musculaires modifiant l’excitabilité de la cellule musculaire, se traduisant par la présence d’une lenteur anormale du relâchement musculaire ressentie comme une raideur musculaire (myotonie). Concernent moins d’1 personne sur 100 000. Prévalence des myotonies congénitales de Becker et de Thomsen : 5/100 000.

Myotonie congénitale de Becker
ORPHA 614 - MIM 255700

• Autosomique récessive • Due à des mutations récessives du gène CLCN-1 (localisé sur le chromosome 7), codant le canal chlore musculaire, canal ionique qui permet le passage des ions chlore à travers la membrane de la cellule musculaire • Débute rarement dans la petite enfance, souvent au cours de la première, voire de la deuxième décennie • Raideur musculaire apparaissant surtout après le repos, s’améliorant à l’effort (phénomène d’échauffement) • Faiblesse musculaire plus intense aux membres supérieurs alors que la raideur prédomine aux membres inférieurs • Hypertrophie des muscles des hanches et des membres inférieurs

Myotonie congénitale de Thomsen
ORPHA 614 - MIM 160800

• Autosomique dominante • Due à des mutations dominantes du gène CLCN-1 (localisé sur le chromosome 7), codant le canal chlore musculaire, canal ionique qui permet le passage des ions chlore à travers la membrane de la cellule musculaire • Débute dès la naissance ou dans la première enfance • Raideur musculaire apparaissant surtout au repos, s’améliorant lors de la poursuite de l’exercice (phénomène d’échauffement) • Myotonie fluctue peu pendant la vie • Absence d’aggravation • Hypertrophie musculaire fréquente.

Myotonie chondrodystrophique ou syndrome de Schwartz-Jampel
ORPHA 800 - MIM 255800

• Maladie génétique autosomique récessive • Due à des mutations dans le gène HSPG2 (localisé sur le chromosome 1), codant le perlecan, une protéine de la membrane basale de la fibre musculaire • Très rare, 1 personne sur 10 millions concernée • Plus fréquente dans les pays à forte endogamie • Le processus dystrophique touche les muscles, l’os et les articulations • Aspect caractéristique du visage (faciès sardonique) avec blépharospasme et blépharophimosis • Hypertrophie musculaire avec myotonie parfois douloureuse lors du mouvement volontaire • Troubles de la croissance osseuse de type dysplasie spondylo-épiphysaire • Petite taille • Déformations squelettiques (notamment de la hanche) et difficultés à la marche • Développe-
Principaux maladies neuromusculaires

SAVOIR & COMPRENDRE

FICHE TECHNIQUE

14 | AFM-Téléthon | Janvier 2015

Principales maladies neuromusculaires

- **Sclérose latérale amyotrophique (SLA)**
 - Maladie progressive, à transmission autosomique dominante, due à un déficit en sous-unité α du canal sodium musculaire (gène **SOD1** localisé sur le chromosome 21).
 - Apparition, généralement après 40 ans.
 - Atteinte des muscles de l'appendice, des membres supérieurs, inférieurs et des membresiliaques.
 - Complications respiratoires et gastro-intestinales.

Dystrophies musculaires congénitales (DMC)

- **Dystrophies musculaires congénitales (DMC)** sans signe d’atteinte du système nerveux central

 Groupe hétérogène de maladies neuromusculaires du tout petit enfant, à transmission autosomique récessive dans la très grande majorité des cas. Actuellement, 26 gènes responsables de DMC sont connus. La majorité de ces DMC peut être classée en collagenopathies (gènes **COL6A1, COL6A2, COL6A3**), dystroglycanopathies (16 gènes dont **POMT1, POMT2, POMGNT1, ISPD, FKRP, FKN** et **LARGE**, parmi les plus souvent en cause) ou mérosinopathies (gène **LAMA2**). Elles débutent à la naissance ou dès les premiers mois de la vie avec une atteinte musculaire prédominante et généralement assez sévère. Elles représentent la deuxième cause d’hypotonie congénitale d’origine musculaire, après les myopathies congénitales. Leur prévalence est estimée à 5/100 000.

 - **Diagnostic positif de DMC** chez un nourrisson basé sur trois critères : hypotonie néonatale de degré variable, augmentation (souvent très franche) des créatines phosphokinases (CPK) et signes dystrophiques à la biopsie musculaire.
 - **Recherche d’anticorps spécifiques dirigés contre trois protéines de la matrice extracellulaire** (mérosine, α-dystroglycane, collagène VI) utile pour un premier *screening* du sous-type de DMC.
 - **Biopsie de peau** parfois nécessaire, soit pour étudier la mérosine, soit pour établir une culture de fibroblastes destinés à objectiver les anomalies morphologiques des réseaux de collagène.
 - **Imagerie cérébrale** (IRM) systématique (recherche d’anomalies de la substance blanche et/ou anomalies des structures sus- et sous-tentorielles).
 - **Examen ophthalmologique systématique**.
 - **L'imagerie musculaire** du corps apporte souvent des éléments d'orientation.
 - La classification des DMC, longtemps fondée sur les seules données cliniques, a évolué grâce aux progrès en génétique.
 - Le diagnostic moléculaire permet de distinguer 6 groupes différents de DMC : mutations de protéines de la matrice extracellulaire, mutations de protéines de la lame basale et du sarcolemme, mutations de glycosyltransférases de l’α-dystroglycane.
mutations d’une protéine du réticulum endoplasmique, mutations de protéines de l’enveloppe nucléaire, mutations d’une protéine impliquée dans le fonctionnement des mitochondries.

Dystrophie musculaire congénitale « mériosine négative » de type 1A (MDC1A)

ORPHA 258 - MIM 607855

- Due à un déficit en mériosine, appelée aussi laminine α-2, (gène LAMA2 localisé sur le chromosome 6), un des constituants majeurs de la membrane basale des cellules musculaires squelettiques • De loin, la forme la plus fréquente en Europe, avec souvent une notion de consanguinité parentale • Hypotonic (enfant mou) précoce avec faiblesse des muscles des membres et du tronc, et rétractions musculaires (pouvant parfois donner lieu à une arthrogrypose • Hypotonic axiale marquée et rétractions articolaires précoces dès les premiers mois de la vie • Anomalies de signal de la substance blanche sans déficit intellectuel ni malformations cérébrales majeures • Bon éveil contrastant avec retard du développement moteur • Marche exceptionnellement acquise et peu fonctionnelle • Évolution sévère liée à l’importance des déformations de la colonne vertébrale et du thorax ainsi qu’aux complications respiratoires • Manifestations épileptiques plus fréquentes que dans la population du même âge • Déficit en mériosine mis en évidence sur biopsie de muscle ou de peau • Analyse génétique gène LAMA2 rendue plus facile par les nouvelles techniques de séquençage à haut-débit • Diagnostic prénatal envisageable par analyse moléculaire directe ou indirecte, avec ou sans étude préalable de la mériosine sur trophoblastes • Prévalence : 3,3/100 000.

Dystroglycanopathies secondaires

- **Dystrophie musculaire congénitale de type 1B (MDC1B)**
 ORPHA 98893 – MIM 604801
 • Due à une anomalie génétique localisée sur le chromosome 1 et entraînant un déficit secondaire et partiel en mériosine ou laminine α-2 • Atteinte et évolution de même type que la dystrophie musculaire congénitale de type 1A en moins sévère.

- **Dystrophie musculaire congénitale de type 1C (MDC1C)**
 ORPHA 52428 – MIM 606612
 • Version infantile de la dystrophie musculaire des ceintures 2I (LGMD2I) • Due à des mutations dans le gène FKRP (localisé sur le chromosome 19) codant une enzyme de la famille de la fukutine et entraînant un déficit secondaire en mériosine et surtout en α-dystroglycane • L’α-dystroglycane interagit avec les laminines de la matrice extracellulaire et établit ainsi un lien entre l’intérieur (cytosquelette) et l’extérieur (membrane basale) de la cellule • Atteinte musculaire atrophique-hypertrophique caractéristique (faiblesse axiale, des ceintures et faciale) avec hypotonie congénitale ou précoce dans les premiers mois • Hypertrophie musculaire (mollets, bras, langue) • Insuffisance respiratoire rapidement progressive, restrictive, avec atteinte diaphragmatique • Atteinte cardiaque très fréquente.
Syndrome d’Ullrich (UCMD)
ORPHA 75840 - MIM 254090
• Allélique de la myopathie de Bethlem • Dû à des mutations d’un des trois gènes codant le collagène VI: COL6A1, COL6A2 et COL6A3 (localisés respectivement sur le chromosome 21 et sur le chromosome 2), l’un codant les sous-unités α-1 et α-2 et l’autre la sous-unité α-3 du collagène VI. • Les formes avec mutations de novo et transmission autosomique dominante sont fréquentes. • Le collagène VI est une protéine constitutive de la matrice extracellulaire formant un maillage très solide et servant de soutien à la fibre musculaire • Atteinte musculaire avec rétractions proximales et raideur axiale, associées à une hyperlaxité distale (doigts, orteils) • Luxation congénitale de hanches fréquente • Pronostic de marche variable d’un sujet à l’autre • Évolution lente avec aggravation musculaire et respiratoire possible • Nombre de cas publiés < 100 cas.

DMC avec colonne raide de type 1 (RSMD1) ou sélénopathie
ORPHA 97244 - MIM 602771
• Due à des mutations du gène SEPN1 (localisé sur le chromosome 1), codant la sélénoprotéine de type N1, une protéine qui jouerait un rôle dans la protection du muscle contre les lésions entraînées par l’oxydation • Myopathie axiale avec dos raide et déficit respiratoire restrictif et précoce • Raideur cervico-axiale (“rigid spine”), s’accompagnant ou non d’une scoliose • Atteinte faciale fréquente • Voix nasonnée • Faiblesses musculaires modérées des membres, peu évolutive et compatible avec la marche • Pas de rétractions majeures des membres.

DMC par mutation du gène LMNA (L-CMD) ou laminopathie
• Due à des mutations dans le gène LMNA (localisé sur le chromosome 1) codant les lamines A/C, protéines jouant un rôle important dans l’architecture de l’enveloppe nucléaire par leur structure tridimensionnelle, mais aussi dans l’organisation de la chromatine et dans la régulation de la transcription et de la réplication de l’ADN. • Deux tableaux de gravité différente • très peu de mouvements spontanés dès la naissance et acquisitions posturales et motrices très limitées • ou acquisitions posturales et motrices quasi normales, et même marche autonome dans certains cas ; puis évolution lentement progressive pendant la 1ère décennie, marquée par l’extension de la faiblesses axiale (hyperlordose dorsale et lombaire), faiblesses proximales des membres supérieurs et distale des membres inférieurs, enraidissement du rachis et rétractions tendineuses essentiellement des membres inférieurs, en particulier des tendons d’Achille. • Le mauvais contrôle céphalique (tête tombante) est un bon signe d’appel.

Dystrophie musculaire congénitale avec déficit en intégrine alpha-7
ORPHA 34520 - MIM 613204
• Due à des mutations dans le gène ITGA7 (localisé sur le chromosome 12), codant l’intégrine α-7, un récepteur cellulaire pour la laminine 2 (protéine de la membrane basale musculaire) qui intervient dans les interactions entre les cellules et la matrice extra-cellulaire, aussi dans les interactions de cellule à cellule, dans la migration et la différenciation cellulaire au cours du développement • Hypotonie à la naissance, parfois torticolis • Retard des acquisitions motrices (marche vers deux à trois ans).

Prise en charge
• Conseil génétique • Kinésithérapie adaptée et appareillage pour lutter contre les rétractions et les déformations des membres, du rachis et de la cage thoracique • Chirurgie du rachis si nécessaire • Surveillance cardiaque régulière (surtout si FKRP) • Traitement médicamenteux en cas d’épilepsie (LAMA2:mérosine négative) • Aides techniques (fauteuil roulant électrique, informatique) pour assurer la meilleure autonomie possible. • Prise en charge des troubles des apprentissages.
Principales maladies neuromusculaires

Dystrophies musculaires congénitales (DMC) avec atteinte du système nerveux central (ou alpha-dystroglycanopathies)

Maladies génétiques à transmission autosomique récessive. Elles débutent à la naissance ou dès les premiers mois de la vie avec une atteinte musculaire plus ou moins marquée associée à des malformations du système nerveux central. Ces formes sont assez rares en France.

- Les alpha-dystroglycanopathies sont en rapport avec des troubles, primitifs ou secondaires, de la glycosylation de l'α-dystroglycane, élément charnière entre la matrice extracellulaire et la dystrophine • Si elle n'est pas glycosylée correctement, l'α-dystroglycane ne peut plus se lier aux protéines de la matrice extracellulaire • Dans les alpha-dystroglycanopathies, les malformations cérébrales et/ou oculaires ainsi qu'un retard mental de sévérité variable sont la règle, suggérant un trouble de la migration neuronale associé • Continuum phénotypique entre les différentes formes cliniques décrites ci-dessous, dues notamment aux mutations dans des gènes codant des enzymes intervenant dans la glycosylation (fukutine, POMT1, POMT2, POMGNT1, LARGE et autres).

Dystrophie musculaire de Fukuyama
ORPHA 272 – MIM 253800
- Due à des mutations du gène FCMD (localisé sur le chromosome 9) codant une enzyme intervenant dans la glycosylation de la fukutine. La fukutine est une protéine de l’appareil de Golgi, dont le déficit entraîne une hypoglycosylation de l'α-dystroglycane. • Préalente au Japon mais observée sous toutes les latitudes • Retard mental et épilpsie sévères associés à une atteinte musculaire importante des muscles de la face et des membres avec hypotonie précoce • Évolution souvent létale dans l’enfance ou l’adolescence • Reconnaissance récente de formes moins sévères s’apparentant à des dystrophies des ceintures • Prévalence : 0,54/100 000.

Syndrome muscle-œil-cerveau ou MEB (Muscle-Eye-Brain)
ORPHA588 – MIM 253280
- Rapporté initialement en Finlande • Dû à des mutations dans le gène POMGNT1 (localisé sur le chromosome 1) qui code la O-mannose bêta-1,2-N-acétylglucosamyl-transférase • Cette protéine localisée dans l’appareil de Golgi est une enzyme qui participe à la transformation de protéines en glycoprotéines (glycanes) en leur ajoutant un sucre spécifique, le O-mannose • Cette O-mannosyl-glycosylation est une transformation protéique rare qui n’est observée que pour certaines glycoprotéines du cerveau, des nerfs et du muscle squelettique • Atteinte musculaire (hypotonicie) modérée ou sévère associée à des malformations cérébrales (avec retard mental et épilepsie myoclonique) et une atteinte oculaire (myopie sévère, hypoplasie rétinienne, strabisme, glaucome congénital).

Syndrome de Walker-Warburg
ORPHA 899 - MIM 236670 / 253800 / 606612 / 613150
- Syndrome très hétérogène au niveau génétique • Initialement en rapport avec des mutations dans le gène POMT1 (localisé sur le chromosome 9) qui code la O-mannosyl transférase 1, autre enzyme participant à la transformation de protéines
Les dystroglycanes sont des glycoprotéines faisant partie du complexe des protéines associées à la dystrophine. Le complexe dystroglycane comprend deux sous-unités : l’α-dystroglycane et le β-dystroglycane, produits d’un seul ARN messager. L’α-dystroglycane est une protéine extra-cellulaire qui se fixe, d’une part, à la sous-unité α2 de la laminine dans la membrane basale du muscle, et d’autre part au β-dystroglycane qui est transmembranaire. Dans sa partie intracellulaire, le β-dystroglycane se lie à la dystrophine. À l’extérieur de la cellule, l’α-dystroglycane se lie directement à des composants de la matrice extra-cellulaire : la laminine 1, la laminine 2, le perlécan et l’agrine. Les dystroglycanes peuvent interagir avec d’autres protéines transmembranaires (complexe des sarcoglycanes, sarcospane) qui stabilisent l’association de l’α-dystroglycane à la surface cellulaire.

en glycoprotéines (glycanes) en leur ajoutant un sucre spécifique, le O-mannose
• Des mutations dans les gènes FKTN, FKRP et POMT2 peuvent aussi être en cause dans le syndrome de Walker-Warburg • Atteinte musculaire en règle masquée par des anomalies complexes du développement cérébral et oculaire • Encéphalopathie avec épilepsie • Évolution péjorative à très court terme • Prévalence à la naissance : 1,65/100 000.

DMC avec mutation du gène LARGE (MDC1D)
ORPHA 98894 - MIM 608840
• Due à des mutations du gène LARGE (localisé sur le chromosome 22) qui code une acétylglucosaminyl-transférase, autre enzyme participant à la glycosylation de l’alpha-dystroglycane • Phénotype plus sévère du point de vue neurologique que musculaire v Retard mental profond. • Faiblesse musculaire prédominante aux ceintures et parfois associée à une rétinopathie.

Prise en charge
• Conseil génétique • Kinésithérapie adaptée et appareillage pour lutter contre les rétractions et les déformations des membres, du rachis et de la cage thoracique • Chirurgie du rachis • Surveillance des lésions du système nerveux central (IRM cérébrale) • Traitements médicamenteux en cas d’épilepsie • Aides techniques (fauteuil roulant électrique, informatique) pour assurer la meilleure autonomie possible • Prise en charge des troubles des apprentissages.
Maladies génétiques rares à transmission autosomique récessive, autosomique dominante et récessive liée à l’X. Elles sont dues à un déficit de protéines liées à l’enveloppe du noyau de la cellule musculaire, l’émerine ou les lamines A/C. Leur prévalence est estimée à 0,3/100 000.

- Forme récessive liée au chromosome X due à l’absence d’émerine, protéine amarrée à la membrane nucléaire interne des fibres musculaires (gène EMD localisé sur le chromosome X) • La forme autosomique dominante, et plus exceptionnellement la forme autosomique récessive, d’Emery-Dreifuss sont dues à l’absence des lamines A et C, protéines formant un réseau fibreux tapissant la face interne de l’enveloppe des noyaux de la cellule (gène LMNA localisé sur le chromosome 1) • Seraient dues à l’absence de couplage entre les protéines du squelette nucléaire et le cytosquelette, du fait de perturbations des interactions entre les protéines émerine, lamines et nesprines • Début dans l’enfance vers 8/10 ans • Rétractions localisées aux coudes, aux tendons d’Achille et au rachis cervical • Progression lente avec installation d’une faiblesse musculaire et d’une amyotrophie des épaules, des bras et des jambes • Atteinte cardiaque : troubles du rythme (avec risque de mort subite) et risque d’insuffisance cardiaque à terme.

Prise en charge
- Conseil génétique • Surveillance et traitement cardiaques (défibrillateur implantable indispensable pour les laminopathies) • Kinésithérapie pour lutter contre les rétractions • Chirurgie parfois nécessaire pour corriger les déformations des membres inférieurs.

Les dystrophies musculaires des ceintures (LGMD pour Limb Girdle Muscular Dystrophy) autosomiques récessives LGMD2

Les dystrophies musculaires des ceintures constituent un groupe hétérogène de maladies génétiques, autosomiques dominantes pour certaines (LGMD1) et autosomiques récessives pour d’autres (LGMD2), touchant 8 personnes par million d’habitants. Leur prévalence est estimée à 0,8/100 000.

Les dystrophies musculaires des ceintures récessives sont de loin les plus fréquentes. Il existe vingt-trois entités, toutes caractérisées sur le plan moléculaire (LGMD2A à LGMD2W). Les formes dominantes sont beaucoup plus rares. Sept parmi les huit entités (LGMD1A à LGMD1H) qui ont été rapportées ont un gène identifié.
Principales maladies neuromusculaires

SAVOIR & COMPRENDRE

FICHE TECHNIQUE

20 | AFM-Téléthon | Janvier 2015

Nomenclature des myopathies des ceintures

- La nomenclature LGMD “1” ou LGMD “2” désigne respectivement les formes autosomiques dominantes ou autosomiques récessives de l'affection.
- La lettre correspond à la chronologie des découvertes des différentes formes : LGMD1B désigne une forme "dominante" dont le gène a été le 2e à être décrit.

- Les dystrophies musculaires des ceintures sont caractérisées par une faiblesse musculaire progressive, dans lesquelles les muscles des ceintures scapulaire et pelvienne sont principalement touchés.
- Altération de la fibre musculaire, consécutive au défaut primaire d’une protéine (dont la fonction est le plus souvent structurelle, ou parfois enzymatique) du sarcolemme, du sarcomère, de l’enveloppe nucléaire ou du cytoplasme.
- Diagnostic clinique confirmé par biopsie musculaire (nécessaire dans la plupart des cas) et étude génétique moléculaire.
- Dystrophies musculaires progressives à début très variable.
- Déficit musculaire du bassin (ceinture pelvienne) et des épaules (ceinture scapulaire) avec ou sans amyotrophie.
- Aspects dystrophiques à la biopsie musculaire.
- Élévation des enzymes musculaires (CPK).
- Atteinte respiratoire possible mais non évolutive.
- Atteinte cardiaque rare sauf exception (LGMD1B, LGMD1D, LGMD2G, LGMD2I).
- Grande variabilité clinique : formes sévères avec aggravation progressive entraînant la perte de la marche; formes modérées caractérisées par la persistance d’une fatigabilité importante.
- Évolution très variable.
- Diagnostic clinique confirmé par biopsie musculaire (nécessaire dans la plupart des cas) et étude génétique moléculaire.
Principales maladies neuromusculaires

SAVOIR & COMPRENDRE

FICHE TECHNIQUE

Calpaïnopathie (LGMD2A)
ORPHA 267 - MIM 253600
- Due à l’altération ou à l’absence de la calpaine 3, enzyme spécifique du muscle squelettique (gène CAPN3 localisé sur le chromosome 15) jouant un rôle clef dans le remodelage du sarcomère • Début des signes à partir de la deuxième décennie • Difficultés à marcher, à monter les escaliers • Atteinte des ceintures purement atrophique avec décollement des omoplates, lentement progressive, symétrique • Atteinte scapulaire apparaît après atteinte pelvienne • Atteinte musculaire sélective (loge postérieure de la cuisse plus touchée que loge antérieure) • Tendance rétractile • Complications cardiaques et respiratoires exceptionnellement rapportées • Première orientation diagnostique encore plus probable si origine basque, réunionaise, slave ou Amish • Prévalence : 3,8/100 000.

Dysferlinopathie (LGMD2B)
ORPHA 268 – MIM 253601
- Due à un déficit en dysferline, protéine localisée à la membrane de la fibre musculaire et impliquée dans le processus de réparation membranaire du muscle squelettique (gène DYSF localisé sur le chromosome 2) • Le même gène est également en cause dans une myopathie distale, la myopathie de Miyoshi • Atteinte des ceintures purement atrophique avec respect des fixateurs de l’omoplate • Atteinte précoce des mollets • Début vers 20 ans et évolution vers une perte de la marche en quelques années • Cardiomyopathie possible • Atteinte respiratoire modérée • Atteinte proximale qui, avec le temps, peut se propager à des muscles distaux • Coexistence possible dans une même famille de formes avec atteinte des ceintures et de formes avec atteinte distale au sein d’une même fratrie.

Sarcoglycanopathies (γ-sarcoglycanopathie ou LGMD2C, α-sarcoglycanopathie ou LGMD2D, β-sarcoglycanopathie ou LGMD2E, δ-sarcoglycanopathie ou LGMD2F)
ORPHA 353 / 62 / 119 / 219
MIM 253700 / 608099 / 604286 / 601287
- Dues à des anomalies de l’une des sarcoglycanes, glycoprotéines transmembranaires qui participent à l’ancrage de la dystrophine à la membrane de la fibre musculaire (gène SGCG codant la γ-sarcoglycane localisé sur le chromosome 13, gène SGCA codant l’α-sarcoglycane localisé sur le chromosome 17, gène SGCB codant la β-sarcoglycane localisé sur le chromosome 4 et gène SGCD codant la δ-sarcoglycane localisé sur le chromosome 5) • Début à un âge variable, plutôt dans l’enfance • Proches sur le plan clinique, avec quelques variantes sur le plan évolutif • Seule l’approche combinant l’immunocytochimie et une analyse génétique des mutations permet de les différencier • Hypertrophie des mollets • Macroglossie • Décollement des omoplates • Risque élevé de cardiomyopathie dilatée surtout dans les gamma-sarcoglycanopathies • Atteinte respiratoire variable • Contexte ethnique informatif : origine maghrébine ou tzigane ou Amish oriente vers certaines mutations.

Dystrophie musculaire des ceintures LGMD2G
ORPHA 34514 – MIM 601954
- Due à un déficit en téléthonine, protéine sarcomérique (gène TCAP localisé sur le chromosome 17) • Atteinte des muscles proximaux débutant dans la deuxième décennie, associée à une atteinte distale se traduisant par un steppage • Nombre de cas publiés : 14 cas • Âge d’apparition : adolescence • Cardiomyopathie possible.

Dystrophie musculaire des ceintures LGMD2H
ORPHA 1878 – MIM 254110
- Due à un déficit en protéine de type ubiquitase au rôle encore inconnu (gène TRIM32 localisé sur le chromosome 9) • Âge d’apparition : adulte • Cardiomyopathie non observée. • Fréquente, mais pas exclusivement, chez les Canadiens hutterites.
Dystrophie musculaire des ceintures LGMD 2I
ORPHA 34515 - MIM 607155
• Due à des mutations du gène FKRP (localisé sur le chromosome 19) codant une enzyme de la famille de la fukutine, la FKRP (fukutine related protein), qui participe à la transformation de protéines en glycoprotéines (glycanes) en leur ajoutant un sucre et entraînant un déficit secondaire en α-dystroglycane et en mésérine (laminine α-2) comme dans la dystrophie musculaire congénitale MDC1C • L’α-dystroglycane est un récepteur de laminine, qui relie cette protéine de la matrice extra-cellulaire au cytosquelette de la cellule musculaire • Variabilité du phénotype musculaire • Pseudohypertrophie musculaire fréquente (mollets, langue) • Rares cas d’insuffisance respiratoire sévère pouvant précéder la perte de la marche • Cardiomyopathie dilatée non corrélée avec la sévérité du déficit moteur • Nombre de cas publiés : >40 familles • Âge d’apparition : grande enfance • Risque élevé de cardiomyopathie.

Dystrophie musculaire des ceintures LGMD2J
ORPHA 140922 - MIM 608807
• Due à des mutations dans le gène TTN (localisé sur le chromosome 2) codant la titine, protéine géante qui joue un rôle clé dans l’organisation du sarcomère • Âge d’apparition : jeune adulte • Cardiomyopathie non observée • Initialement décrite en Finlande, semble être devenue une cause fréquente de LGMD dans le reste de l’Europe • Difficultés d’étude du gène TTN largement améliorées par les nouvelles techniques de séquençage.

Dystrophie musculaire des ceintures LGMD2K
ORPHA 86812 - MIM 609308
• Due à des mutations dans le gène POMT1 (localisé sur le chromosome 9) qui code la O-mannosyl transférase 1, enzyme participant à la transformation de protéines en glycoprotéines (glycanes) en leur ajoutant un sucre spécifique, le O-mannose • Une nouvelle forme de LGMD2 (récursive) a été décrite avec retard mental • Celle-ci est due à une anomalie dans le gène POMT1, déjà connue comme responsable du syndrome de Walker-Warburg • Âge d’apparition : enfance • Cardiomyopathie non observée.

Dystrophie musculaire des ceintures LGMD2L
ORPHA 206549 - MIM 611307
• Due à des mutations dans le gène ANO5 (localisé sur le chromosome 11) qui code l’anoctamine 5, une protéine transmembranaire • Nombre de cas publiés : 50 cas • Âge d’apparition : variable (de l’adulte jeune à l’adulte âgé) • Cardiomyopathie non observée. • L’asymétrie de l’atteinte au niveau des membres inférieurs est évocatrice • Intérêt de l’imagerie musculaire • En passe d’être une cause très fréquente de LGMD récessive.

Dystrophie musculaire des ceintures LGMD2M
ORPHA 206554 - MIM 611588
• Due à des mutations dans le gène FKTN (localisé sur le chromosome 9) qui code la fukutine, une protéine impliquée dans la glycosylation des protéines • Nombre de cas publiés : 3 cas • Âge d’apparition : petite enfance ou plus tardivement • Cardiomyopathie possible.

Dystrophie musculaire des ceintures LGMD2N
ORPHA 206559 - MIM 613158
• Due à des mutations dans le gène POMT2 (localisé sur le chromosome 14) qui code la O-mannosyl transférase 2, enzyme participant à la transformation de protéines en glycanes • Âge d’apparition : petite enfance • Cardiomyopathie rarement observée.
Dystrophie musculaire des ceintures LGMD2O
ORPHA 206564 - MIM 613157
- Due à des mutations dans le **gène POMGNT1** (localisé sur le chromosome 1) qui code une enzyme impliquée dans la glycosylation de certaines protéines • Âge d'apparition : grande enfance • Cardiomyopathie non observée.

Dystrophie musculaire des ceintures LGMD2P
ORPHA 280233 - MIM 613818
- Due à des mutations dans le **gène DAG1** (localisé sur le chromosome 3) qui code une dystroglycane • Âge d'apparition : petite enfance • Cardiomyopathie non observée • Prévalence < 1/1 000 000.

Dystrophie musculaire des ceintures LGMD2Q
ORPHA 280233 - MIM 613723
- Due à des mutations dans le **gène PLEC1** (localisé sur le chromosome 8) qui code la plectine, protéine membranaire d'ancrage du cytosquelette • Âge d'apparition : petite enfance • Association possible à une maladie de peau (épidermolyse bulleuse) • Cardiomyopathie non observée • Prévalence < 1/1 000 000.

Dystrophie musculaire des ceintures LGMD2R
ORPHA 363543 - MIM 615325
- Due à des mutations dans le **gène DES** (localisé sur le chromosome 2) qui code la desmine, protéine essentielle à la force de contraction et à l'intégrité des myofibrilles • Cardiomyopathie : bloc de conduction A-V • Prévalence < 1/1 000 000 • Forme frontière avec les myopathies myofibrillaires.

Dystrophie musculaire des ceintures LGMD2S
ORPHA 369840 - MIM 615356
- Due à des mutations dans le **gène TRAPPC11** (localisé sur le chromosome 4) qui code une protéine essentielle dans la fusion membranaire, par interaction avec d'autres protéines TRAPP (**TRAnsport Protein Particle**). Le complexe TRAPP est impliqué dans le transport de l'appareil de Golgi vers le réticulum endoplasmique, dans la formation et/ou dans le déplacement des endosomes/lysosomes • Âge d'apparition : adulte jeune • Faiblesse musculaire proximale progressive entraînant des troubles de la marche • Atteinte plus grave des muscles de la hanche que ceux de la ceinture scapulaire (dysplasie de la hanche) • Scoliose • Cardiomyopathie non observée • Prévalence < 1/1 000 000.

Dystrophie musculaire des ceintures LGMD2T
ORPHA 363623 - MIM 615352
- Due à des mutations dans le **gène GMPPB** (localisé sur le chromosome 3) qui code la GDP-mannose pyrophosphorylase B, enzyme associée à la glycosylation de l'α-dystroglycane • Hypotonie • Microcéphalie • Léger retard intellectuel • Convulsions • Difficulté à monter les escaliers et à courir • Cataracte • Nystagmus • Cardiomyopathie possible • Insuffisance respiratoire • IRM cérébrale normale • Biopsie musculaire : hypoglycosylation de DA1 • Âge d'apparition : petite enfance/adulte jeune • Prévalence < 1/1 000 000.

Dystrophie musculaire des ceintures LGMD2U
ORPHA 352479 - MIM ?
- Due à des mutations dans le **gène ISPD** (localisé sur le chromosome 7) qui code l'isoprenoïde synthétase nécessaire à la glycosylation de l'α-dystroglycane • Âge d'apparition : variable • Prévalence < 1/1 000 000 • Cardiomyopathie : possible.

Dystrophie musculaire des ceintures LGMD2V
ORPHA ? - MIM ?
- Due à des mutations dans le **gène GAA** (localisé sur le chromosome 17) qui
Principales maladies neuromusculaires

SAVOIR & COMPRENDRE

FICHE TECHNIQUE

24 | AFM-Téléthon | Janvier 2015

code l’α-glucosidase, une enzyme lysosomiale impliquée dans la glycogénolyse
• Maladie allélique avec la maladie de Pompe (glycogénose de type II) • Le phéno-
type LGMD est non exceptionnel • Âge d’apparition variable • Cardiomyopathie : possible surtout en cas d’atteinte précoce.

Dystrophie musculaire des ceintures LGMD2W
ORPHA ? – MIM ?
• Due à des mutations dans le gène LIMS2 (localisé sur le chromosome 2) qui code LIMS2, une protéine d’adhésion associant une kinase (liée aux intégrines) à une pro-
téine multidomaine. LIMS2 assure la médiation d’interactions protéine-protéine dans les sites d’adhérence entre les cellules et la matrice extracellulaire • Âge d’apparition : enfance • Cardiomyopathie : possible.

Dystrophies musculaires des ceintures (LGMD pour Limb Girdle Muscular Dystrophy) autosomiques dominantes LGMD1

Dystrophie musculaire des ceintures LGMD1A (myotilino-
pathie)
ORPHA 266 - MIM 159000
• Due à un déficit en myotiline, protéine sarcomérique du muscle squelettique et du muscle cardiaque • Mutations dans le gène MYOT localisé sur le chromosome 5 • Début des troubles vers la fin de la deuxième décennie • Prédominance des symptômes aux membres inférieurs • Atteinte des cordes vocales fréquente (difficultés de phonation) • Cardiomyopathie inconstante • Évolution lente • Âge d’apparition : adulte.

Dystrophie musculaire des ceintures LGMD1B
ORPHA 264 - MIM 159001
• Due à un déficit en lamine A/C (laminopathie), protéine formant un réseau fibreux tapissant la face interne de l’enveloppe nucléaire (gène LMNA localisé sur le chro-
mosome 1), comme dans la dystrophie musculaire d’Emery-Dreifuss autosomique dominante et la maladie de Charcot-Marie-Tooth axonale de type 2B1 (CMT 2B1) • Atteinte proximale débutant habituellement dans l’enfance • Rétractions • Atteinte cardiaque (troubles de la conduction et du rythme ou cardiomyopathie dilatée à un stade plus tardif).

Dystrophie musculaire des ceintures LGMD1C
ORPHA 265 - MIM 607801
• Due à un déficit en cavéoline 3 (cavéolinopathie), protéine de la membrane cellu-
laire (gène CAV3 localisé sur le chromosome 3) • Les cavéolines sont des protéines associées aux caveolae ou invaginations de la membrane plasminque • La cavéoline 3 est spécifique du muscle • Des mutations de CAV 3 sont aussi retrouvées en cas d’élévation isolée des créatines kinases, de maladie des muscles ondulants (“rippling muscle disease”), dans une forme de myopathie distale et une forme de cardio-
myopathie familiale hypertrophique • Âge d’apparition : enfance • Crampes • Myo-
œdème • Contractions musculaires en vague • Cardiomyopathie fréquente.

Dystrophie musculaire des ceintures LGMD1D
ORPHA 34516 -MIM 60149
• Due à une mutation dans le domaine G/F du gène DNAJB6 (un gène localisé
sur le chromosome 7) codant une protéine chaperone • Rarissime (prévalence : <1/1 000 000) • Début variable à l’âge adulte (25-50 ans) • Rétractions • Cardiomyopathie non observée.

Dystrophie musculaire des ceintures LGMD1E
ORPHA 34517 - MIM 603511
- Due à des mutations dans le gène *DES* (localisé sur le chromosome 2) qui code la desmine, protéine essentielle à la force de contraction et à l’intégrité des myofibrilles
- Début tardif chez l’adulte • Évolution lente • Dysphagie possible • Cardiomyopathie fréquente • Rarissime (prévalence <1/1 000 000).

Dystrophie musculaire des ceintures LGMD1F
ORPHA 55595 - MIM 608423
- Due à des mutations dans le gène *TNPO3* (localisé sur le chromosome 7) qui code la transportine 3 (TNPO3), facteur essentiel d’épissage de l’ARNm précurseur. TNPO3 est un récepteur d’import nucléaire des protéines SR riches en sérine/arginine.

Dystrophie musculaire des ceintures LGMD1G
ORPHA 55596 - MIM 609115
- Due à des mutations dans le gène *HNRPDL* (localisé sur le chromosome 4) qui code des ribonucléoprotéines nucléaires hétérogènes. Ces protéines se lient l’ARN pré-messager pour participer à l’épissage et à l’exportation nucléaire.

Dystrophie musculaire des ceintures LGMD1H
ORPHA 238755 - MIM 613530
- Due à une anomalie localisée sur le chromosome 3, pas encore identifiée.

Prise en charge
- Conseil génétique • Kinésithérapie adaptée • Appareillage • Surveillance de la fonction respiratoire
- Surveillance de la fonction cardiaque • Compensation des fonctions motrices déficientes par des aides techniques pour assurer la meilleure autonomie possible (fauteuil roulant électrique, informatique...) • Prise en charge des difficultés d’apprentissage en cas de retard mental.
Dystrophie musculaire facio-scapulo-humérale (FSHD1 et FSHD2)

ORPHA 269
MIM 158900 / 158901

Maladie génétique, autosomique dominante, due à une modification de la structure d’une petite région du chromosome 4, la région D4Z4, pouvant perturber la structure de la chromatine (relaxation) et pouvant activer l’expression de gènes voisins (FRG1, FRG2, ANT1, DUX4…) et/ou d’un gène dormant de la zone D4Z4, le gène DUX4.

Dans la plupart des cas, la relaxation de la chromatine de la région D4Z4 est due à une anomalie génétique localisée dans la région D4Z4 elle-même (qui est plus courte dans la FSHD) sur le chromosome 4. Cette forme de la maladie est appelée FSHD1.

Dans 5 % des cas, l’anomalie génétique en cause est située sur le chromosome 18, au niveau du gène SMCHD1 et entraîne des perturbations de la méthylation de la région D4Z4. Cette forme de la maladie est appelée FSHD2.

Les deux formes de dystrophie musculaire facio-scapulo-humérale, FSHD1 et FSHD2, ne diffèrent que du point de vue génétique.

Le chiffre de prévalence communément admis est de 5 personnes atteintes pour 100 000. En France, environ 3 000 personnes sont atteintes de FSHD.

- Dystrophie musculaire progressive débutant à un âge très variable, classiquement entre 10 et 20 ans, avec aux extrêmes des formes infantiles parfois très précoces (et donc sévères) et des formes débutant au-delà de 50 ans.
- Déficit moteur dans des territoires préférentiels : certains muscles du visage (facio), des épaules (scapulo) et des bras (humérale).
- Déficit souvent asymétrique.
- Atteinte des muscles des membres inférieurs responsable de troubles de la marche parfois très invalidants.
- Modification de la mimique (inexpressivité, yeux ouverts pendant le sommeil, sourire transversal ou oblique).
- Incapacité à siffler ou à gonfler les joues.
- Lèvre inférieure souvent éversée.
- Difficulté à lever les bras au-dessus de la tête, épaules tombant en avant et omoplates proéminentes.
- Atteinte des muscles fessiers dans près de la moitié des cas et des muscles releveurs des pieds entraînant des difficultés à se redresser de la position assise et une démarche instable avec steppage.
- Insuffisance ventilatoire secondaire aux déformations thoraciques.
- Atteinte possible (souvent asymptomatique) de l’audition (cochlée) et de lavision (rétine).
- Évolution très lente avec souvent des périodes de stabilisation.
- Espérance de vie non modifiée malgré une incapacité fonctionnelle qui peut être sévère selon les individus.
- Diagnostic confirmé par un test ADN consistant à rechercher l’anomalie spécifique de la FSHD1 sur le bras long du chromosome 4 à partir d’un prélèvement sanguin standard (test effectué en routine).
- La recherche de mutation du gène SMCHD1 est encore du domaine de la recherche.

Prise en charge

- Conseil génétique.
- Kinésithérapie adaptée.
- Surveillance de la vision et de l’audition.
- Bilan cardiaque (surveillance de principe).
- Parfois intérêt d’une chirurgie de fixation des omoplates.
- Compensation des fonctions motrices déficientes pour assurer la meilleure autonomie possible (appareillage releveur du pied, canne, siège releveur, fauteuil roulant…).
- Prise en charge spécifique des formes infantiles graves.
DYSTROPHIE MUSCULAIRE

oculopharyngée (DMOP)

ORPHA 270 - MIM 164300

Maladie génétique, autosomique dominante, due à des expansions de résidus polyalanine (acide aminé codé par le triplet de nucléotides GCA) dans la protéine PABPN1 (gène PABP2 localisé sur le chromosome 14). Maladie rare en France (1 personne sur 100 000), plus fréquente au Québec.

- Dystrophie musculaire progressive touchant principalement les muscles releveurs des paupières et les muscles de la déglutition • Début clinique à l’âge adulte (40 à 60 ans) • Ptosis • Dysphagie, troubles de déglutition parfois sévères pouvant entraîner des complications (pneumopathies d’inhalation ou état cachectique) • Atteinte des membres essentiellement à caractère proximal (ceintures scapulaire et pelvienne) : la marche ou certains gestes des bras peuvent devenir difficiles • Atteinte possible des muscles des membres • Évolution lente avec aggravation progressive du déficit musculaire oculopharyngé • Risque vital lié aux troubles de déglutition.

Prise en charge

- Conseil génétique • Adaptation de l’alimentation • Rééducation, chirurgie (myotomie crico-pharynienne) • Gastrostomie ou jéjunostomie d’alimentation en cas de troubles sévères de déglutition • Port de lunettes anti-ptosis pour relever les paupières, voire chirurgie du ptosis • Compensation des fonctions déficientes pour assurer la meilleure autonomie possible (canne, siège releveur, fauteuil roulant...).

DYSTROPHIES MYOTONIQUES

ORPHA 206647

Maladies génétiques autosomiques dominantes dues à la répétition exagérée d’une séquence d’ADN de 3 ou 4 nucléotides, selon le cas dans le gène DMPK (pour la DM1) ou dans le gène ZNF9 (pour la DM2). En France, 5 personnes sur 100 000 sont concernées par une dystrophie myotonique.

- Accumulation dans les noyaux d’ARN messagers mutés, également porteurs du triplet ou du quadruplet anormalement répété, perturbant l’expression et l’activité de protéines de la cellule en piégeant d’autres ARN messagers et des protéines d’épissage • Maladies multisystémiques touchant les muscles, les yeux, le système nerveux, l’appareil cardio-respiratoire, l’appareil digestif et les glandes endocrines.

Dystrophie myotonique de Steinert ou dystrophie myotonique de type1 (DM1)

ORPHA 273 - MIM 160900

- Due à la répétition exagérée (de 50 à 3 000 fois au lieu de 5 à 37 fois) d’un triplet
Principales maladies neuromusculaires

SAVOIR & COMPRENDRE

FICHE TECHNIQUE

28

AFM-Téléthon | Janvier 2015

Mécanisme moléculaire de la maladie de Steinert.
Chez les personnes atteintes de maladie de Steinert, un des deux exemplaires du gène DMPK comporte une anomalie génétique. Les ARN messagers produits à partir de cet exemplaire sont anormalement longs, ils ont tendance à se lier à des protéines du noyau en formant des agrégats. La présence de ces agrégats perturbe le bon fonctionnement de la cellule.

nucléotidique CTG dans le gène DMPK (localisé sur le chromosome 19) codant la myotonine protéine kinase, protéine impliquée dans le transfert d’énergie dans la cellule • Plus ce triplet est répété, plus la maladie est sévère. • Conseil génétique difficile à cause de l’instabilité des répétitions, du phénomène d’anticipation (âge de révélation de la maladie plus précoce et sévérité plus importante de la maladie au fil des générations), variable selon le sexe du parent transmetteur • Test présymptomatique et test prénatal possibles • Difficultés de relaxation après une contraction musculaire (myotonie, notamment au niveau des mains) • Calvitie précoce chez l’homme • Cataracte bilatérale et précoce (avant 50 ans) parfois révélatrice de la maladie • Somnolence excessive diurne • Troubles des fonctions cognitives, de l’humeur et du comportement • Troubles du rythme et de la conduction cardiaque • Troubles respiratoires • Faiblesse et atrophie des muscles du visage, du cou, du pharynx, des avant-bras, des muscles releveurs des pieds, des abdominaux, des intercostaux et du diaphragme • Troubles digestifs (constipation/diarrhée, sub-occlusion, mégacôlon) • Troubles du sommeil, dépression • Stéritilité • Atteintes et évolution variables pouvant atteindre un stade de grande invalidité 15 à 20 ans après son apparition (perte de la marche et déficit intellectuel) • Début clinique à tout âge • Généralement, plus la maladie débute tôt, plus elle est sévère.

Forme tardive de l’adulte • Se limitant à une cataracte et une calvitie chez l’homme.
Forme de l’adulte jeune • Se manifeste dans la 3e ou 4e décennie • Myotonie prédominant au niveau des mains (difficulté à relâcher le poing) • Amyotrophie et déficit distaux • Parfois dysphonie et troubles de la déglutition.
Forme infantile • Des difficultés d’apprentissage isolées peuvent être révélatrices de la maladie, en dehors de toute manifestation musculaire (myotonie ou déficit).
Forme congénitale • Hypotonie néonatale majeure • Détresse respiratoire • Pieds bots • Troubles de succion et de déglutition • Pronostic généralement réservé.

Dystrophie myotonique de type 2 ou DM2 (dite aussi PROMM)
ORPHA 606 – MIM 602668
• Autre forme de dystrophie myotonique autosomique dominante • Due à un quadruplet de nucléotides (CCTG), répété de 75 à plus de 11 000 fois dans le gène ZNF9 (localisé sur le chromosome 3) codant une protéine dite en doigt de zinc • Début dans l’enfance ou à l’âge adulte par une myotonie, une amyotrophie et une perte progressive de la force musculaire des muscles proximaux des membres volontiers associées à des myalgies • Cataracte et calvitie souvent présentes
• Atteinte cardiaque (troubles du rythme) moins fréquente et anomalies d’autres organes beaucoup plus modérées que dans la dystrophie myotonique de Steinert • Pas de phénomène d’anticipation ni de forme congénitale démontrés jusqu’à présent • Évolution en règle plus favorable que celle de la dystrophie myotonique de Steinert.

Prise en charge
• Conseil génétique • Kinésithérapie adaptée • Surveillance cardiaque systématique, pose d’un pacemaker si nécessaire • Surveillance respiratoire (EFR, gazométrie) • Chirurgie de la cataracte • Précautions anesthésiques • Traitements médicamenteux des symptômes myotoniques, des douleurs, de l’hypersonnie et des troubles de l’humeur • Aides techniques pour compenser les fonctions motrices déficientes et assurer la meilleure autonomie possible (canne, fauteuil roulant électrique).

Dystrophinopathies
Maladies génétiques, récessives liées au chromosome X, dues à des mutations du gène DMD codant la dystrophine. Un garçon nouveau-né sur 3 500 est atteint de la dystrophie musculaire de Duchenne (150 nouveaux cas/an).
La dystrophine est une protéine localisée sous la membrane de la cellule musculaire. Elle lie l’actine du cytosquelette à des glycoprotéines du sarcolemme : dystroglycanes (α, β) et sarcoglycanes (α, β, γ, δ). L’α-dystroglycane se fixe à la laminine α2 de la matrice extracellulaire. Ainsi le complexe dystrophine-protéines associées établit un lien entre le cytosquelette de la fibre musculaire et la matrice extracellulaire, en particulier la membrane basale. Des anomalies moléculaires de la dystrophine provoquent une fragilisation de la membrane de la fibre musculaire.

Dystrophie musculaire de Duchenne (DMD)

ORPHA 98896 – MIM 310200

- Difficultés à la marche débutant en général vers l’âge de 2-3 ans
- Affaiblissement des muscles des hanches et du bassin (ceinture pelvienne)
- Démarche dandinante, torse jeté en arrière (hyperlordose)
- Difficulté à monter les escaliers
- Augmentation du volume des mollets
- Aggravation et généralisation de l’atteinte musculaire : membres inférieurs et supérieurs, tronc, muscles lisses et cardiaque sont touchés
- Perte de la marche vers l’âge de 10 - 12 ans
- Déformation de la colonne vertébrale (cyphoscoliose lors de la poussée pubertaire)
- Atteinte cardiaque (syndrome restrictif)
- Atteinte cardiaque (myocardiopathie dilatée)
- Possible atteinte des performances verbales et de la mémoire de travail (1/3 des cas)
- Formes pseudo-autistiques avec troubles de la communication
- Diagnostic prénatal et préimplantatoire possible
- Le diagnostic définitif (positif et différentiel) est basé sur des critères moléculaires
- Prévalence : 3,7/100 000
- Certaines mères transmettrices sont symptomatiques et peuvent présenter des crampes, des myalgies, une fatigue musculaire, une intolérance à l’effort, voire un véritable déficit musculaire
- Cardiomyopathie plus ou moins manifeste, plus ou moins évolutive.

Dystrophie musculaire de Becker (DMB)

ORPHA 98895 – MIM 300376

- Dix fois moins fréquente que la dystrophie musculaire de Duchenne
- Symptômes similaires à la dystrophie musculaire de Duchenne moins marqués et d’apparition plus tardive
- Progression plus lente et espérance de vie normale ou subnormale en l’absence d’une atteinte cardiaque grave et évolutive
- Perte de la marche inconstante
- Difficultés cognitives exceptionnelles mais possibles.

Formes mineures de dystrophinopathies

- Crampes, douleurs musculaires à l’effort, élévation isolée des CPK (creatine phosphokinase)
- Formes modérées sans perte de la marche.

Prise en charge

- Conseil génétique
- Prévention des rétractions musculo-tendineuses par une kinésithérapie adaptée
- Appareillage
- Surveillance des fonctions respiratoire et cardiaque
- Chirurgie de la colonne vertébrale
- Assistance ventilatoire
- Compensation des incapacités fonctionnelles par des aides techniques (fauteuil roulant électrique, informatique...) pour assurer la meilleure autonomie possible
- Traitements médicamenteux : corticoides; inhibiteurs de l’enzyme de conversion (IEC) en prévention de l’insuffisance cardiaque.
- Prise en charge des difficultés cognitives ou comportementales.
FIBRODYSPLASIE ossifiante progressive (FOP)

ORPHA 337 - MIM 135100

Maladie génétique, autosomique dominante ou sporadique, due à une mutation dans le gène *ACVR1* (localisé sur le chromosome 4) codant un récepteur impliqué dans le processus d’ostéogénèse. Très rare, 6 personnes sur 10 millions sont concernées (50 cas en France).

- Début dans l’enfance
- Poussées douloureuses suivies d’ossification des muscles qui devenant “durs comme la pierre” sont responsables d’une ankylose progressive (limitations articulaires) et de déformations
- Malformations congénitales des orteils et/ou du pouce (microdactylie, hallux valgus)
- Évolution imprévisible par poussées se succédant à intervalles variables tout au long de la vie
- Poussées pouvant apparaître spontanément, très souvent leur survenue est post-traumatique, même après un traumatisme minime (injection intramusculaire notamment).

Prise en charge

- Conseil génétique
- Prévenir tout traumatisme même minime du muscle
- Éviter autant que faire se peut les gestes chirurgicaux (y compris biopsie musculaire) et les injections intramusculaires (vaccins, anesthésies locales y compris au niveau dentaire)
- Kinésithérapie douce
- Prophylaxie des chutes
- Traitement antalgique au long cours
- Un diagnostic précoce des poussées permet de mettre en route un traitement susceptible de prévenir l’ossification secondaire des muscles.

GLYCOCÉNOSES musculaires

ORPHA 206959

Maladies génétiques, autosomiques récessives, en relation avec le métabolisme glucidique. Elles sont dues à un défaut dans la chaîne de réactions chimiques qui transforme les sucres apportés par l’alimentation en énergie (ATP) utilisable par les muscles. Lors de l’exercice physique, le glycogène ne peut être transformé en glucose pour fournir l’énergie nécessaire au bon fonctionnement de la cellule musculaire. Le glycogène non utilisé va s’accumuler de façon excessive dans les cellules de différents organes.

- Plusieurs types de glycogénoses musculaires selon le déficit enzymatique
- Affectent le muscle et/ou d’autres organes (cerveau, foie, cœur)
- Début à n’importe quel âge (de l’enfance à l’âge adulte), le plus souvent sous forme d’une intolérance à l’effort
- Fatigue musculaire et myalgies à l’effort, crampes et/ou faiblesse musculaire progressive et atrophie musculaire
- Autres manifestations éventuellement associées : myoglobinurie, atteinte hépatique, atteinte cardiaque
- Évolution variable selon les formes.

Maladie de Pompe ou glycogénose de type II

ORPHA 365 - MIM 232300

- Incidence : 1/40 000 naissances par an
- Prévalence : 1,5/100 000
- Environ 100 patients diagnostiqués en France (pour une prévalence estimée à 400 cas)
- À la fois maladie métabolique musculaire et maladie de surcharge lysosomale, due à un
Principales maladies neuromusculaires

SAVOIR & COMPRENDRE

FICHE TECHNIQUE

déficit de l’α-1,4-glucosidase acide (gène GAA localisé sur le chromosome 17) ou maltase acide (enzyme lysosomale), empêchant la dégradation du glycogène en glucose au sein du lysosome • Transmission autosomique récessive • Trois formes cliniques selon l’activité enzymatique résiduelle :

• **forme infantile** : début avant 3 mois • Enfant mou (hypotonie) • Difficultés de suc- tion et de déglutition • Cardiomyopathie • Hépatomégalie • Problèmes respiratoires dus à l’atteinte diaphragmatique • Évolution sévère à court terme avant l’existence de l’enzymothérapie substitutive dont l’efficacité semble évidente dans la plupart des formes précoces ;

• **forme juvénile** : début fin de l’enfance – début de l’adolescence • Myopathie +/- cardiomyopathie • Difficultés motrices et respiratoires • Évolution vers une insuffisance respiratoire sévère vers 15-20 ans ;

• **forme de l’adulte** : début après 20 ans • Faiblesse musculaire modérée • Cardiopathie exceptionnelle • Mais atteinte respiratoire souvent au premier plan • Errance diagnostique fréquente • Évolution lente compatible avec une espérance de vie prolongée.

Maladie de Cori (ou maladie de Forbes) ou glycogénose de type III

ORPHA 366 – MIM 232400

• Incidence estimée à 1 sur 100 000 naissances • Due à un défaut d’un ou des deux sites d’activité de l’enzyme débranchante (gène AGL localisé sur le chromosome 1) nécessaire pour dégrader les points de branchement lors du catabolisme du glyco-gène • Dans les conditions physiologiques, l’action successive des deux sites distincts de l’enzyme débranchante (un site glucosidase et un site transférase), transforme le glycogène dans le foie et dans les muscles et le rend alors utilisable par l’organisme • Dans la glycogénose de type III, le glycogène qui s’accumule a une structure anormale avec de nombreux points de branchement et des chaînes périphériques courtes. • Quatre formes de glycogénoses de type III selon le(s) site(s) enzymatique(s) atteint(s) et l’organe touché :

- **Forme Ila** : (maladie de Cori ; maladie de Forbes): les deux activités de l’enzyme
sont défectueuses à la fois dans les muscles et dans le foie • Forme la plus fréquente de la maladie.
- **Forme IIIb** : les deux activités de l’enzyme sont défectueuses uniquement dans le foie • Les muscles dont le cœur, sont épargnés.
- **Forme IIIc** : seule l’activité glucosidase de l’enzyme est manquante.
- **Forme IIIId** : seule l’activité transférase de l’enzyme est manquante à la fois dans les muscles et dans le foie.
 • Tolérance au jeûne variable avec des chutes du glucose sanguin (hypoglycémies)
 • Hépatomégalie précoce s’atténuant à l’âge adulte • Retard de croissance statural et psychomoteur • Faiblesse musculaire pouvant être sévère • Parfois, cardiomyopathie hypertrophique • Dans 15% des cas, atteinte hépatique isolée.

Maladie d’Andersen (ou amylopectinose) ou glycogénose de type IV
ORPHA 367 – MIM 232500
• Due au déficit de l’enzyme branchante du glycogène (**gène** GBE1 localisé sur le chromosome 3), entraînant le stockage, dans divers organes, d’un glycogène de structure anormale, moins ramifiée, rappelant celle de l’amylopectine (polyglucosan)
• Tableau clinique extrêmement hétérogène avec une atteinte hépatique et/ou neuromusculaire • Âge du début dans la forme neuromusculaire : de la période foetale à l’âge adulte • Forme foetale (forme la plus sévère) : diminution ou absence des mouvements foetaux, arthrogrypose, hypoplasie pulmonaire et décès périnatal • Formes congénitales : hypotonie sévère, cardiomyopathie, défaillance respiratoire, atteinte neuronale.
- **Formes plus légères** : début tardif, faiblesse musculaire ou cardiomyopathie avec insuffisance cardiaque • Diagnostic prénatal possible.

Maladie de McArdle ou glycogénose de type V
ORPHA368 - MIM 232600
• Due au déficit de l’enzyme phosphorylase musculaire ou myophosphorylase (**gène** PYGM localisé sur le chromosome 11), empêchant la dégradation normale du glycogène en glucose • Début généralement tard dans l’adolescence : intolérance musculaire à l’effort avec des myalgies et des crampes • Phénomène de “second souffle”
• Fatigue • Après un exercice physique, la moitié des malades présentent une élévation massive de la créatine-kinase ainsi qu’une rhabdomyolyse avec myoglobinurie (urines rouge foncé ou rouge brun) pouvant conduire à une insuffisance rénale aiguë • Évolution le plus souvent stable, parfois sévère • Intérêt du grip-test.

Maladie de Tarui ou glycogénose de type VII
ORPHA 371 – MIM 232800
• Maladie très rare ; 30 cas dans le monde (principalement Japonais et Juifs ashkénazes) • Ne touche que quelques personnes en France • Due à un déficit en phosphofructokinase (**gène** PFKM localisé sur le chromosome 12), empêchant la dégradation normale du glycogène en glucose • Intolérance musculaire à l’effort (douleurs et crampes à l’exercice) avec récupération au repos • Parfois faiblesse musculaire permanente • Évolution le plus souvent stable, parfois sévère.

Prise en charge
• Conseils diététiques appropriés et différenciés selon le type de glycogénose • Régime riche en protides • Fractionnement des repas en petites collations fréquentes • Consommation de glucides programmée en fonction de l’effort physique à fournir • En cas d’hypoglycémie, pratiquer un apport nocturne continu de sucres et de nutriments par l’intermédiaire d’une sonde gastrique • Éviter les efforts intenses • Aménager des temps de repos • Entraînement physique contrôlé pour améliorer les performances physiques • Kinésithérapie et assistance ventilatoire • Assurer la meilleure autonomie possible • Enzymothérapie substitutive dans la glycogénose de type II.
LIPIDOSES musculaires

ORPHA 206953

Maladies génétiques autosomiques récessives. Myopathies en relation avec le métabolisme des lipides se manifestant le plus souvent lors du jeûne, du stress et/ou lors d’un exercice physique.

- Les lipidoses musculaires sont dues à un défaut dans la chaîne de réactions chimiques qui transforment les graisses apportées par l'alimentation en énergie utilisable par l'organisme (bêta-oxydation des acides gras, voie de dégradation des acides gras, qui se déroule dans les mitochondries (sauf la première étape qui a lieu dans le cytoplasme), et dans d'autres organites cellulaires que sont les peroxysomes.
- Les graisses s'accumulent dans les cellules musculaires et ne peuvent être utilisées.
- Intolérance à l’effort caractérisée par la survenue de douleurs musculaires pendant ou après l’exercice physique • Éventuellement associées : altération de la conscience, atteinte cardiaque, myoglobinurie, hypoglycémie suite à l’exercice physique • Début néonatal, dans l’enfance ou à l’âge adulte selon la lipidose en cause • Évolution extrêmement variable • Certaines lipidoses musculaires ne se manifestent que par le manque d’adaptation de l’organisme à l’effort et au jeûne • Plusieurs types de lipidoses selon le déficit enzymatique observé.

Déficit en carnitine

ORPHA 158 - MIM 212140
- Dû à un déficit en transporteur de la carnitine (gène localisé sur le chromosome 5)
- Le rôle principal de la carnitine est de contrôler l’entrée des acides gras à longue chaîne (>C14) dans les mitochondries et d’intervenir dans la formation des acylcarnitines à partir des acides gras à chaînes moyenne et courte au niveau de la matrice mitochondriale • Faiblesse musculaire proximale et progressive avec accès d’hypoglycémie • Cardiopathie parfois associée • Chez le jeune enfant, possibilité d’épisodes d’encéphalopathie en rapport avec les accès d’hypoglycémie • Récupération possible grâce à un traitement adapté.

Déficit en carnitine-palmitoyl transférase de type II (CPT II)

ORPHA 228302 - MIM 255110
- Gène localisé sur le chromosome 1 • L’enzyme CPT II, associée à la membrane mitochondriale interne, catalyse le transport des acides gras à chaîne longue ou très longue en leur permettant de franchir les membranes mitochondriales, première étape de la bêta-oxydation des acides gras • Deux formes différentes selon l’âge du début • Chez l’enfant : affection généralisée et létale • Chez l’adulte jeune : début au cours des 2° ou 3° décennies, parfois plus tardivement • Selon les organes touchés : forme “musculaire” ou forme “hépatocardiomusculaire” • Faiblesse musculaire • Atteinte cardiaque (cardiomyopathie, troubles du rythme) • Atteinte hépatique • Récupération possible grâce à un traitement adapté • Nombre de cas publiés supérieur à 300.

Déficit partiel en CPT II
- Crampes musculaires et myoglobinurie intenses, prolongées, paroxystiques à l’effort. Parfois douleurs permanentes • Récupération entre les accès en général.

Déficit en acyl CoA déshydrogénase

ORPHA 309120
- Gène localisé sur le chromosome 12 • Atteinte proche de celle du déficit en CPT II
• Différentes formes cliniques en fonction de la longueur des chaînes constituant les acides gras sur lesquels agissent des enzymes acyl-CoA déshydrogénases spécifiques • Myopathie globale ou proximale (forme dégradée de l’âge adulte) • Récupération possible sous traitement adapté.

Déficit en VLCAD (Very Long Chain Acyl-CoA Dehydrogenase)
ORPHA 26793 - MIM 201475
• Gène situé sur le chromosome 17, impliqué dans la β-oxydation des lipides dans la mitochondrie • Tableau clinique hétérogène allant de la cardiomyopathie fatale à une myopathie débutant à l’adolescence.

Prise en charge
• Limiter les efforts, aménager des temps de repos, surveiller le régime alimentaire • Déficit en carnitine et déficit en CPT II - carnitine, pas d'exercice prolongé, régime pauvre en graisses et riche en hydrates de carbone, ne pas sauter de repas • Déficit en acyl-CoA déshydrogénase : parfois sensible à la riboflavine (vitamine B2).

Maladies de CHARCOT-MARIE-TOOTH (CMT)
ORPHA166

Maladies génétiques, autosomiques dominantes ou autosomiques récessives ou dominantes liées à l’X. Atteinte des nerfs périphériques. L’atteinte peut primitivement concerner soit la gaine de myéline (CMT1 et CMT4), soit l’axone (CMT2), soit la gaine de myéline et l’axone (formes intermédiaires dominantes liées à l’X (CMTX) ou autosomiques dominantes (DI-CMT)). Les maladies de Charcot-Marie-Tooth touchent 1 à 5 personnes sur 10 000. Environ 30 000 personnes atteintes en France.

• Neuropathies héréditaires sensitivo-motrices • Selon localisation de l’atteinte nerveuse : CMT de type I (atteinte initiale de la gaine de myéline avec diminution des vitesses de conduction motrices) et CMT de type II (dégénérescence axonale avec des vitesses de conduction motrices sensiblement normales) • Âge d’apparition très variable, débutant généralement par les pieds qui se creusent, puis deviennent insensibles et peu stables • Amyotrophie distale en particulier des mollets, des cuisses, des avant-bras et des mains • Atteintes en principe bilatérales • Steppage s’installant de façon progressive provoquant chutes, entorses et difficulté à courir • Réduction du périmètre de marche • Rétractions tendineuses entraînant une mise en “griffe” des orteils • Atteinte des mains non systématique, généralement après plusieurs années d’évolution : diminution de force, mouvements fins difficiles à exécuter, doigts en “griffe”, possible perte de la fonction de pince • Fatigabilité • Crampes fréquentes surtout en période d’évolution • Troubles de la sensibilité profonde et superficielle possibles • Douleurs • Sévérité de l’atteinte très variable d’un patient à l’autre y compris dans une même famille • Évolution imprévisible • Degré de handicap allant d’une simple gêne à la marche à l’usage d’un fauteuil roulant (environ 10% des cas) • Atteinte peu fréquente du nerf phrénique provoquant une insuffisance respiratoire plus ou moins importante • Évolution généralement lente.
• Diagnostic basé sur l’électroneuromyogramme (ENMG), et prise de sang pour les formes identifiées au niveau génétique • Le recours à une biopsie nerveuse reste exceptionnel • Formes surtout différenciées par mode de transmission et localisation génétique.
Maladies de Charcot-Marie-Tooth de type 1 (CMT1)

- Autosomiques dominantes, démyélinisantes
- Représentent près de 50 % des cas de CMT
- Dues à des anomalies :
 - du gène PMP22 (localisé sur le chromosome 17) codant les protéines de myéline PMP-22 (CMT1A, ORPHA 101081 - MIM 118220 ; CMT1E, ORPHA 90658 - MIM 118300) ;
 - du gène MPZ (CMT1B, ORPHA 101082 - MIM 118200) codant une protéine membranaire de la cellule de Schwann ;
 - du gène LITAF (localisé sur le chromosome 16) codant un facteur impliqué dans la dégradation des protéines (CMT1C, ORPHA 101083, MIM 601098) ;
 - du gène EGR2 (localisé sur le chromosome 10) codant un facteur de transcription (CMT1D, ORPHA 101084, MIM 607678) ;
 - du gène NEFL (localisé sur le chromosome 8) codant une protéine des neurofilamens légers (CMT1F, ORPHA 101085, MIM 607734).

Maladies de Charcot-Marie-Tooth de type 4 (CMT4)

- Autosomiques récessives, démyélinisantes
- Dues à des mutations :
 - du gène GDAP1 (localisé sur le chromosome 8), codant une protéine qui joue un rôle dans le développement neuronal (CMT4A, ORPHA 99948, MIM 214400) ;
 - du gène MTMR2 (localisé sur le chromosome 11), codant une phosphatase associée à la myotubulinaire (CMT4B1, ORPHA 99955, MIM 601382) ;
 - du gène SBF2 (localisé sur le chromosome 11) codant une pseudophosphatase associée à la myotubulinaire (CMT4B2, ORPHA 99956, MIM 604563) ;
 - du gène SH3TC2 (localisé sur le chromosome 5) codant une protéine à domaines SH3 et TPR (CMT4C, ORPHA 99949, MIM 601596) ;
 - du gène NDRG1 (localisé sur le chromosome 8), codant une protéine signal qui joue rait un rôle dans la différenciation cellulaire (CMT4D, ORPHA 99950, MIM 601455) ;
 - du gène EGR2 (localisé sur le chromosome 10) codant un facteur de transcription (CMT4E, ORPHA 99951, MIM 605253) ;
 - du gène MPZ (localisé sur le chromosome 1) codant une protéine membranaire de la cellule de Schwann (CMT4E, ORPHA 99951, MIM 605255) ;
 - du gène PRX (localisé sur le chromosome 19) codant la périaxine, protéine qui stabilise l’unité axone-cellule de Schwann (CMT4F, ORPHA 99952, MIM 614895) ;
 - du gène FIG4 (localisé sur le chromosome 6) codant une phosphatase (CMT4J, ORPHA 139515, MIM 611228).

Maladies de Charcot-Marie-Tooth de type 2 (CMT2)

- Axonales, autosomiques dominantes ou récessives
- Représentent près de 30 % des cas de CMT
- Dues à des mutations :
 - du gène KIF1B (localisé sur chromosome 1) codant la kinesine 1B, protéine qui joue un rôle dans le transport axonal (CMT2A1, ORPHA 99946, MIM 118210) ;
 - du gène MFN2 (localisé sur le chromosome 1) codant la mitofusine, protéine de fusion des mitochondries (CMT2A2, ORPHA 99947, MIM 609260) ;
 - du gène RAB7 (localisé sur chromosome 3) codant une protéine impliquée dans l’endocytose (CMT2B, ORPHA 99936, MIM 600882) ;
 - du gène LMNA (localisé sur chromosome 1) codant la lamine A/C, protéine associée à la membrane nucléaire (CMT2B1, ORPHA 98856, MIM 605588) ;
 - du gène TRPV4 (localisé sur le chromosome 12) codant un canal cationique perméable au Ca++ (CMT2C, ORPHA 99937, MIM 606071) ;
 - du gène GARS (localisé sur chromosome 7) codant l’enzyme ARNt-glycyl synthétase essentielle à la synthèse des protéines (CMT2D, ORPHA 99938, MIM 601472) ;
 - du gène NEFL (localisé sur chromosome 8) codant une protéine constitutive des neurofilaaments légers (CMT2E, ORPHA 99939, MIM 607684) ;
 - du gène HSPB1 (localisé sur chromosome 7) codant une protéine de choc thermique (CMT2F, ORPHA 99940, MIM 606595) ;
- du gène MPZ (localisé sur le chromosome 1) codant une protéine membranaire de la cellule de Schwann (CMT2I, ORPHA 99942, MIM 607677 ; CMT2J, ORPHA99943, MIM 607736) ;
- du gène GDAP1 (localisé sur le chromosome 8) codant une protéine impliquée dans le développement neuronal (CMT2K, ORPHA 99944, MIM 607831) ;
- du gène HSPB8 (localisé sur chromosome 12) codant une protéine de choc thermique (CMT2L, ORPHA 99945, MIM 608673) ;
- du gène AARS (localisé sur le chromosome 16) codant l'alanyl-t-ARN synthétase (CMT2N, ORPHA 228174, MIM 613287) ;
- du gène DYNC1H1 (localisé sur le chromosome 14) codant la chaîne lourde de la dynéine cytoplasmique 1, participant au transport axonal (CMT2O, ORPHA 284232, MIM 614228) ;
- du gène LRSAM1 (localisé sur le chromosome 9) codant une protéine impliquée dans l'adhésion moléculaire sélective des cellules (CMT2P, ORPHA 300319, MIM 614436).

Maladies de Charcot-Marie-Tooth liées à l'X (CMTX)
• 10% des CMT • Dues à des mutations :
- du gène Cx32 (localisé sur chromosome X) codant la connexine 32 (CMTX1, ORPHA 101075, MIM 302800 ; CMTX2, ORPHA 101076, MIM 302801 ; CMTX3, ORPHA 101077, MIM 302802 ; CMTX4, codes ORPHA 101078, MIM 310490) ;
- du gène PRPS1 (localisé sur le chromosome X) codant une enzyme impliquée dans le métabolisme des purines (CMTX5, ORPHA 99014, MIM 311070).
• Prévalence : 1,6/100 000.

Maladies de Charcot-Marie-Tooth de type intermédiaire (DI-CMT)
• Autosomiques dominantes, démyélinisantes et axonales • Dues à des mutations :
- du gène DNM2 (localisé sur chromosome 19) codant la dynamine 2, protéine jouant un rôle dans le transport axonal (DI-CMTB, ORPHA 100044, MIM 606482) ;
- du gène YARS (localisé sur chromosome 1) codant une enzyme impliquée dans la synthèse d'ARN de transfert (DI-CMTC, ORPHA 100045, MIM 608323) ;
- du gène MPZ (localisé sur le chromosome 1) codant une protéine membranaire de la cellule de Schwann (DI-CMTD, ORPHA 100046, MIM 607791).

Prise en charge
• Conseil génétique • Kinésithérapie pour lutter contre les rétractions musculo-tendineuses • Appareillage (releveurs de pieds, attelles, chaussures orthopédiques…) • Chirurgie orthopédique pour fixer les articulations des pieds • Aides techniques pour compenser les difficultés manuelles • Aides à la marche (cannes, fauteuil roulant électrique…).
Maladies **INFLAMMATOIRES DU MUSCLE**

Maladies non héréditaires plurifactorielles, principalement d'origine auto-immune. Les principales myopathies inflammatoires recouvrent essentiellement les dermatomyosites, les polymyosites et les myosites à inclusions.

La nouvelle classification clinico-sérologique (Trojanov) différencie les myopathies acquises idiopathiques en : polymyosites pures, dermatomyosites pures, myosites de chevauchement associées à des signes cliniques de connectivité et/ou à un auto-anticorps, myosites associées à un cancer (contexte paranéoplasique en l’absence d’auto-anticorps).

Dermatomyosite (ORPHA 221)
- Microangiopathie (atteinte de l’endothélium des petits vaisseaux du derme et du muscle) médiée par le complément • Déficit moteur symétrique, proximal (ceintures scapulaire et pelvienne, muscles cervicaux) • Signes cutanés : érythème lilacé des paupières, érythème en bande du dos des mains et des doigts, du pourtour unguéal • Examens complémentaires : autoanticorps spécifiques, infiltrat inflammatoire périvasculaire, atrophie péri-fasciculaire • Évolution variable : souvent rapide et grave en l’absence de traitement adapté, parfois plus lente voire chronique • Association dermatomyosite et cancers fréquente (ovaires, poumons, pancréas, lymphome, estomac, côlon) • Prévalence : 17/100 000.

Polymyosite (ORPHA 732)
- Lyse des fibres musculaires par des lymphocytes cytotoxiques auto-réactifs • Début insidieux proximal (ceintures scapulaire et pelvienne et muscles cervicaux) et symétrique • Absence d’atteinte cutanée • Diagnostic confirmé par biopsie musculaire : infiltrat inflammatoire endomysial, infiltrat périnécrotique, fibres envahies • Prévalence : 17/100 000.

Myosite à inclusions (ORPHA 611)
- Dépôts de protéines de la dégénérescence • Début insidieux (> 6 mois) • Patients de plus de 30 ans, survenue quasi exclusive après 50 ans • Impossibilité de se relever de la position accroupie • Déficit moteur plus distal, asymétrique avec au moins une des atteintes suivantes : tibial antérieur, quadriceps, fléchisseurs du poignet et des doigts, palmaires • Caractère parfois asymétrique du déficit moteur • Troubles de déglutition fréquents • Evolution lente et progressive • Diagnostic confirmé par biopsie musculaire : présence de vacuoles bordées, infiltrat inflammatoire endomysial et périnécrotique, fibres envahies • Réponse aux traitements immunosuppresseurs très incomplète voire inexistante • Prévalence : 0,49/100 000.

Prise en charge
- Traitements symptomatiques (antalgiques, corticoïdes, immunosuppresseurs, immunoglobulines en injection IV...) de longue durée, en règle générale efficaces sauf dans les myosites à inclusions • Kinésithérapie adaptée et remusculation sont souvent nécessaires en dehors des périodes de poussées de la maladie • Prévention des infections pulmonaires. Investigations (en fonction du contexte) pour rechercher cancers (dermatomyosites) : scanner thoracique, mammographie, dosage des marqueurs tumoraux, fibroscopie bronchique, coloscopie, gastroscopie.
Maladie non héréditaire, de type auto-immun : la plupart des personnes atteintes de myasthénie fabriquent des auto-anticorps se fixant sur les récepteurs de l’acétylcholine, situés au niveau de la jonction neuromusculaire. La myasthénie auto-immune touche 20 personnes sur 100 000.

- Maladie liée à une réaction immune à médiation humorale dépendant des cellules T, dirigée contre la plaque motrice de la membrane post-synaptique
- La forme avec anticorps anti-récepteur de l’acétylcholine (anti-RACH) est de loin la plus fréquente
- Existence de formes (un peu différentes sur le plan clinique) avec anticorps dirigés contre la protéine MuSK, un récepteur tyrosine-kinase spécifique du muscle (anti-MuSK), contre la protéine LRP4 low-density lipoprotein receptor-related protein (anti-LRP4) protéine identifiée comme un récepteur de l’agrine ; l’interaction entre LRP4 et l’agrine active MuSK
- Anomalie de la transmission neuromusculaire, débutant à tout âge mais le plus souvent, de 20 à 30 ans chez les femmes et de 40 à 60 ans chez les hommes
- Faiblesse et fatigabilité musculaires d’intensité et de durée variables pouvant toucher n’importe quel muscle
- Fluctuations importantes des manifestations
- Aggravation à l’effort et/ou à la répétition du mouvement
- Généralement, faiblesse musculaire peu importante le matin augmentant dans la journée et améliorée par le repos
- Ptosis fluctuant (ou diplopie, voire ophtalmophégie), évocateur du diagnostic
- Risque de thymome
- Évolution variable par poussées de gravité variable, avec des rémissions plus ou moins complètes ou des exacerbations imprévisibles, aboutissant à un dégénérescence axonale.

© AFM-Téléthon
tissant à un handicap extrêmement variable selon les individus • Risque de décompensation de la myasthénie pendant la grossesse, l'accouchement ou le post-partum.
• Diagnostic confirmé par différentes méthodes : tests pharmacologiques qui déclenchent une amélioration significative de la force musculaire ; mise en évidence dans le sérum d’anticorps anti-récepteur de l’acétylcholine (anti-RACH) ou anti-tyrosine kinase musculaire (anti-MuSK) ou anti-LPR4 • Études électrophysiologiques avec stimulation répétitive des nerfs et/ou électromyographie de fibre unique (EMG-FU)
• Symptômes d’alarme pouvant annoncer une crise myasthénique : gêne respiratoire, dysphagie majeure, aggravation rapide des symptômes de la maladie.

Prise en charge
• Scanner thoracique initial à la recherche d’un thymome lors de la découverte d’une myasthénie
• Penser à l’association avec une autre maladie auto-immune tout au long du suivi • Anticholinesthérasiques • Corticothérapie • Immunosuppresseurs • Thymectomie • En cas de poussée aigüé : assistance ventilatoire • Précautions anesthésiques • Certains médicaments sont contre-indiqués : curare, béta-bloquants, certains antibiotiques, magnésium en injection intraveineuse
• Vaccins vivants atténués (polio buccal, rubéole…) contre-indiqués en cas de traitement.

MYOPATHIES congénitales
ORPHA 97245

Groupe hétérogène de maladies génétiques rares, autosomiques dominantes, autosomiques récessives ou récessives liées à l’X. Débutent généralement précocement. Le chiffre de prévalence est de 3,8/100 000.

• Différents types de myopathies congénitales individualisés grâce à la biopsie musculaire et aux études ultrastructurales (microscopie électronique) • Début, en règle générale, précoce (de la naissance à 6 mois/1 an, voire plus) • Possibilité d’un début plus tardif selon la forme de la maladie • En principe non évolutives : affections constitutionnelles (anomalies structurelles de la fibre musculaire) sans processus dégénératif • En général, plus la maladie est apparue tôt, plus elle peut mettre en jeu le

![Diagramme des myofibrilles et des protéines impliquées](image-url)
pronostic vital surtout en cas d’atteinte des muscles respiratoires • Une amélioration n’est toutefois pas exclue • Chez les enfants plus grands et les adultes, elles sont en général beaucoup moins invalidantes et souvent compatibles avec une marche autonome • Les myopathies associées à un dysfonctionnement de RyR1 sont parmi les plus fréquentes des myopathies congénitales.

Myopathie congénitale avec bâtonnets ou nemaline myopathy

ORPHA 607 - MIM 161800

• Groupe hétérogène de maladies musculaires génétiques définies par l’existence d’anomalies de structure du muscle squelettique • Caractérisées par la présence de petites inclusions en forme de bâtonnets dans la fibre musculaire • Concernent 1 personne sur 100 000 environ • Présentes dès la naissance ou peuvent se révéler plus tardivement, même à l’âge adulte • Les formes les plus sévères se manifestent dès la naissance par une hypotonie généralisée diffuse (enfant mou) avec atteinte des mains, des pieds, du tronc et du visage, rétractions, importantes déformations articulaires, troubles de déglutition et atteinte de la fonction respiratoire • Dans les formes à révélation plus tardive : déformations des pieds et de la colonne vertébrale (cyphoscoliose), performances sportives réduites • Chez les grands enfants et les adultes : déficit non évolutif et en général modérément invalidant.

• Plusieurs formes selon le mode de transmission et l’âge de début de la maladie.

• Seulement 50 % des cas répertoriés sont associés à des gènes responsables identifiés à ce jour, codant des protéines des filaments fins sarcomériques intervenant dans la contraction musculaire.

NEM 1 (ORPHA 607 – MIM 609284) : Dénficit en tropomyosine 3 (gène TPM3 localisé sur le chromosome 1 codant l’alpha-tropomyosine lente, autosomique dominante (formes modérées intermédiaires et à début dans l’enfance) et autosomique récessive (forme congénitale sévère);

NEM 2 (ORPHA 607 - MIM 256030) : Dénficit en nêbuline (gène NEB localisé sur le chromosome 2), autosomique récessive (formes congénitales typiques modérées et forme congénitale sévère);

- **NEM 3** (ORPHA 607 – MIM 161800) : Dénficit en α-actine squelettique (gène ACTA1 localisé sur le chromosome 1), autosomique dominante (formes modérées et sévères), autosomique dominante de novo (formes modérées et sévères), autosomique récessive (forme congénitale sévère, ou forme avec excès en myofilaments fins), mosaïque germinale (formes modérées et sévères);

- **NEM 4** (ORPHA 171881 - MIM 609285) : Dénficit en bêta-tropomyosine (gène TPM2 localisé sur le chromosome 9), autosomique dominante (forme congénitale typique);

- **NEM 5** (ORPHA 607 6 MIM 605355) : Dénficit en troponine T lente (gène TNNT1 localisé sur le chromosome19), autosomique récessive (forme congénitale rapportée exclusivement dans la communauté « Amish »);

- **NEM 6** (ORPHA 607 - MIM 609273) : Dénficit en BTB/Kelch (gène KBTBD13 localisé sur le chromosome 15, codant une protéine de la famille des BTB/Kelch), autosomique dominante (forme bénigne);

- **NEM 7** (ORPHA 607 - MIM 610687) : Dénficit en cofiline-2 (gène CFL2 localisé sur le chromosome 14), autosomique récessive (forme congénitale typique).

Myopathie congénitale avec cores centraux

ORPHA 597 - MIM 117000

• Maladie génétique, autosomique dominante ou récessive • Due à un défaut du récepteur de la ryanodine, canal calcique permettant le passage du calcium à travers la membrane de la cellule musculaire (gène RYR1 localisé sur le chromosome 19) • Ce gène RYR1 est aussi un des gènes en cause dans l’hyperthermie maligne (MIM 145600) • Manifestations différentes selon l’âge de début de la maladie • Degrés de sévérité très différents chez les individus atteints appartenant à la même famille et ayant la même anomalie génétique • Souvent détectée durant l’enfance et parfois à la naissance, peut apparaître plus tardivement, voire à l’âge adulte • Peut être découverte à l’occasion d’une crise d’hyperthermie maligne lors d’une anesthésie
(contracture musculaire généralisée associée à une élévation de la température du corps survenant à l’occasion d’une anesthésie générale avec certains produits).

- **Chez l’enfant** : hypotonie généralisée (enfant mou), retard d’acquisition de la marche, déformations orthopédiques (luxation de hanche, thorax et/ou pieds déformés), insuffisance respiratoire.

- **Chez l’adulte** : faiblesse musculaire diffuse avec parfois des déformations orthopédiques • Atteinte non progressive, habituellement modérément invalidante • Affection généralement compatible avec une scolarité et une vie sociale normales • Dans certaines formes sévères : restrictions de la marche, parfois assistance ventilatoire.

 - La variabilité de l’expression clinique et le spectre des anomalies morphologiques associées aux quelques 250 mutations du gène *RYR1*, décrites à ce jour, suggèrent l’existence d’un continuum clinique et histologique.

Myopathie congénitale myotubulaire

ORPHA 596 – MIM 310400

- Maladie génétique, récessive liée au chromosome X, due à des mutations dans le gène *MTM1* (localisé sur le chromosome X), codant la myotubularine, une enzyme impliquée dans la maturation des fibres musculaires • Fréquente réduction des mouvements fœtaux, associée à la présence d’un hydramnios • À la naissance : hypotonie néonatale et insuffisance respiratoire sévère, troubles de la déglutition, paralysie des muscles du visage (diplégie faciale), ptosis, ophtalmopclégie, déformations du thorax et des pieds souvent associées • Évolution le plus souvent rapidement fatale • Risque accru de péliose hépatique • Lorsqu’une réanimation respiratoire permet à l’enfant de passer le cap néonatal, il est susceptible d’acquérir avec beaucoup de retard la station assise, la station debout et même la marche • Faiblesse musculaire très marquée • Ophtalmopclégie • Développement intellectuel normal.

Myopathie congénitale centronucléaire

- Maladie génétique autosomique dominante ou récessive • La moitié des formes autosomiques dominantes sont dues à des mutations dans le gène *DNM2* (localisé sur le chromosome 19) codant la dynamine 2 (*ORPHA 169189 – MIM 160150*) • Les formes autosomiques récessives sont dues à des mutations du gène *BIN1* (localisé sur le chromosome 2) codant l’ampiphysine 2 (*ORPHA 169186 – MIM 255200*), ou du gène *MTMR14* (localisé sur le chromosome 3) codant une protéine de la famille des myotubulaires (*ORPHA 169189 – MIM 160150*) • Maladie proche cliniquement de la myopathie myotubulaire avec laquelle elle a longtemps été confondue • La forme classique se transmet sur le mode autosomique dominant • De nombreux cas sont sporadiques • Présente dès la naissance mais peut apparaître plus tardivement, voire à l’âge adulte • Débute généralement dans la petite enfance par un retard d’acquisition de la marche • Faiblesse musculaire des membres inférieurs • Atteinte des muscles du visage • Atteinte de la musculature oculaire avec limitation des mouvements des globes oculaires (ophtalmopclégie) et chute de la paupière supérieure (ptosis) • Évolution variable, plus ou moins invalidante (en fonction de la faiblesse musculaire et des déformations orthopédiques) • Souvent lentement évolutionnaire • Parfois perte de la marche autonome.

Myopathie congénitale avec multiminicores

- Maladie génétique, autosomique dominante ou récessive, due le plus souvent à des mutations du gène *SEPN1* (localisé sur le chromosome 1), codant la sélénoprotéine de type N1, une glycoprotéine associée aux membranes du réticulum endoplasmique, jouant un rôle dans la protection du muscle contre les lésions causées par l’oxydation (*ORPHA 2020 – MIM 255310*) • Le gène *RYR1* peut aussi être en cause (*MIM 117000*) • Hypotonie néonatale • Troubles de la déglutition, paralysie des muscles du visage (immobilité faciale) • Atteintes diaphragmatique et cardiaque fréquemment associées • Retard d’acquisition de la marche, faiblesse musculaire diffuse, rétractions marquées au niveau de la colonne vertébrale (*rigid spine*) • Évolution très variable.
Principales maladies neuromusculaires

Myopathie congénitale avec surcharge en myosine ou myopathie à corps hyalins
ORPHA 53698 – MIM 608358
• Maladie génétique, autosomique dominante ou récessive, due à des mutations dans le gène MYH7 (localisé sur le chromosome 14), codant la chaîne lourde bêta de la myosine, protéine sarcomérique.

Myopathie congénitale avec atrophie musculaire et hypertrophie généralisée
ORPHA 178461 – MIM 300696
• Maladie génétique, récessive liée à l’X, due à des mutations dans le gène FHL1 (localisé sur le chromosome X), codant la protéine FHL1, impliquée dans le développement du tissu musculaire. • Forme frontière avec les myopathies rétractiles et les syndromes scapulopéroniers.

Prise en charge
• Conseil génétique • Kinésithérapie adaptée (mobilisation articulaire, relaxateurs de pression...) et appareillage pour lutter contre les rétractions et les déformations des membres, du rachis et de la cage thoracique • Chirurgie de la scoliose (formes graves) • Prise en charge respiratoire intensive (ventilation nasale, trachéotomie...) dans les formes graves • Surveillance cardiaque • Aides techniques (fauteuil roulant électrique, informatique...) pour assurer la meilleure autonomie possible.

MYOPATHIES DISTALES
ORPHA 599

Groupe hétérogène de maladies génétiques, autosomiques dominantes ou récessives, ayant pour particularité de toucher principalement les muscles des extrémités des membres (jambes, pieds, avant-bras, mains).

• Déficit et atrophie des muscles des extrémités des membres (jambes, pieds, avant-bras, mains) apparaissant à l’adolescence ou à l’âge adulte • Progression ascendante de l’atteinte musculaire n’excluant pas une extension proximale du déficit et évolution relativement modérée selon le type.

Myopathie distale de type Miyoshi
• Maladie autosomique récessive, fréquente dans les populations endogames, due à un déficit de la dysferline, une protéine localisée à la membrane de la fibre musculaire ou à un déficit de l’anoctamine 5, une protéine transmembranaire • Myopathie distale la plus fréquente en France • Début chez l’adulte jeune avant 25 ans à la loge postérieure des jambes • Les premiers signes sont une incapacité à se tenir debout sur la pointe des pieds, à monter les escaliers, à courir et à sauter • Faiblesse et atrophie du mollet, parfois asymétrique au début • Muscles intrinsèques des pieds épargnés • Évolution relativement lente, marquée par une atteinte des muscles de la ceinture pelvienne, entraînant une incapacité à marcher (dans un tiers des cas, au bout de 10 ou 15 ans d’évolution en moyenne) • Plus tardivement, les muscles des membres supérieurs et des épaules sont atteints • Parfois formes sévères et formes à évolution très rapide • Absence d’atteinte cardiorespiratoire • Prévalence : 0,26/100 000.
Déficit en dysferline
ORPHA 45448 – MIM 254130
• La dysferline (gène DYSF localisé sur le chromosome 2) joue un rôle dans la fusion et la réparation membranaires et pourrait également intervenir dans la transduction d’un signal • La dysferline interagit avec des protéines liées à la membrane telles que les annexines A1 et A2 • Le même gène DYSF est également en cause dans une des formes récessives de dystrophie musculaire des ceintures (LGMD2B) et dans la myopathie distale de la loge antérieure de jambe (MDAT) • La myopathie de Miyoshi et la LGMD2B peuvent être présentes dans une même famille • Il en est de même pour la myopathie de Miyoshi et la MDAT.

Déficit en anoctamine 5
ORPHA 45448 – MIM 613319
• L’anoctamine 5 (gène ANOS5 localisé sur le chromosome 11) est une protéine impliquée dans le fonctionnement du canal chlorure activé par le calcium. • Elle jouerait aussi un rôle dans les mécanismes de réparation membranaire.

Dystrophie musculaire tibiale de type Udd ou titinopathie
ORPHA 609 – MIM 600334
• Maladie autosomique dominante, due à des mutations du gène TTN (localisé sur le chromosome 2) codant la titine, protéine du sarcomère qui maintient les filaments de myosine et contribue à l’élasticité du muscle • En France, ne concerne à ce jour que quelques familles • Début tardif après 40 ans, habituellement entre 45 et 55 ans • Faiblesse musculaire (parfois asymétrique) des muscles releveurs du pied (muscle
du tibial antérieur) : pieds "tombants" au bout de 10 ou 20 ans d'évolution • Légère atteinte des muscles de la cuisse chez environ 1 patient sur 10 • Atteinte cardiaque exceptionnelle • Évolution généralement lente et peu invalidante • Atteinte musculaire habituellement limitée aux jambes • Perte de la marche exceptionnelle • Les homozygotes présentent un tableau plus sévère s'apparentant aux myopathies des ceintures.

Myopathie distale de type Nonaka

ORPHA 602 – MIM 605820

• Maladie autosomique récessive, due à des mutations dans le gène *GNE* (localisé sur le chromosome 9), codant une enzyme, l'UDP-N-acétylglucosamine α2-épimérase • *GNE* est aussi impliqué dans une autre myopathie, la myopathie à corps d'inclusions héréditaire (IBM2) • Rare (1 cas sur 1 million d'individus) principalement décrite au Moyen-Orient et en Asie (Japon, Chine) • Débute chez l'adulte jeune (au cours de la deuxième ou troisième décennie) par une atteinte des muscles de la loge antérieure de la jambe (pieds tombants et steppage) • Atteinte plus tardive de la loge postérieure des jambes et des muscles proximaux • Quadriiceps longtemps épargné • Usage du fauteuil roulant après 10 à 15 ans d'évolution en moyenne • Déformations articulaires • Prévalence : 0,1/100 000 • Traitement substitutif par acide sialique à l'essai.

Myopathie distale de type Welander

ORPHA 603 – MIM 604454

• Maladie autosomique dominante, principalement décrite en Suède • Due à des mutations dans le gène *TIA1* (localisé sur le chromosome 2), codant la protéine TIA1, un élément-clé dans la dynamique des granules de stress • Débute tardivement (après 40 ans) par une faiblesse des muscles extenseurs du pouce et de l'index : maladresse des mouvements fins des doigts (boutonage, faire des nœuds, tenir une aiguille, taper sur un clavier...), puis difficultés pour étendre les doigts • Évolution lente • Atteinte musculaire limitée au-dessous des coudes dans près de la moitié des cas • Atteinte distale des membres inférieurs plus tardive (muscles de la loge antérieure des jambes) entraînant un steppage avec tendance à trébucher et à se tordre la cheville • Réflexes tendineux (achilléens) diminués • Troubles vasomoteurs pouvant entraîner un refroidissement des mains et des pieds • Prévalence : 10 /100 000.

Myopathie distale de type Laing

ORPHA 59135 – MIM 160500

• Maladie autosomique dominante • Extrêmement rare, décrite à ce jour dans quatre familles dans le monde (Australie, Allemagne et Autriche) • Due à des mutations dans le gène *MYH7* (localisé sur le chromosome 14), codant la chaîne lourde bêta de la myosine cardiaque • Début infantile par une atteinte sélective tibiale antérieure : faiblesse des extenseurs des orteils (signe caractéristique du "gros orteil tombant") et des chevilles entraînant des troubles de la marche (tendance à trébucher) • Évolution lente des pieds vers la tête, de l'extrémité des membres (atteinte distale) vers leur racine (atteinte proximale) • Déficit s'étendant aux extenseurs des doigts (notamment de l'auriculaire) et des poignets au cours de la troisième décennie • Faiblesse proximale après 40 ans (muscles fléchisseurs de la nuque, des hanches et des épaules), ainsi que faiblesse des muscles abdominaux • Très peu invalidante, même à un âge avancé • Possible tremblement des mains chez quelques patients.

Myopathie distale à début tardif de type Markesbery-Griggs

ORPHA 609 – MIM 600334

• Maladie autosomique dominante • Due à des mutations dans le gène *ZASP* (localisé sur le chromosome 10), codant une protéine du disque Z • Classée parmi les myopathies myofibrillaires.
Myopathie distale avec déficit en filamine C
ORPHA 63273 – MIM 614065
• Maladie autosomique dominante • Due à des mutations dans le gène FLNC (localisé sur le chromosome 7), codant la filamine C, protéine capable de lier l’actine • Classée parmi les myopathies myofibrillaires.

Myopathie distale avec faiblesse des cordes vocales et du pharynx
ORPHA 59135 – MIM 606070
• Maladie autosomique dominante • Due à des mutations dans le gène MATR3 (localisé sur le chromosome 5), codant une protéine de la matrice nucléaire.

Myopathie distale à début précoce
• Maladie autosomique dominante • Due à des mutations dans le gène KLHL9 (localisé sur le chromosome 9), codant la protéine Kelch-like homologue 9, impliquée dans l’assemblage du cytosquelette.

Myopathie distale avec déficit en dynamine 2
• Maladie autosomique dominante • Due à des mutations dans le gène DNM2 (localisé sur le chromosome 19), codant la dynamine 2, protéine cytoplasmique impliquée dans la formation des vésicules lors de l’endocytose.

Myopathie distale avec déficit en VCP
• Maladie autosomique dominante • Due à des mutations dans le gène VCP (localisé sur le chromosome 9), codant une protéine contenant la valosine, impliquée dans le système de dégradation protéasome-ubiquitine • Tableau associant une myopathie à inclusions avec démence précoce et maladie de Paget.

Myopathie distale avec déficit en nébuline
• Maladie autosomique récessive • Due à des mutations dans le gène NEB (localisé sur le chromosome 2), codant la nébuline, protéine associée aux filaments fins du muscle strié.

Myopathie distale avec déficit en cavéoline-3
• Maladie autosomique dominante • Due à des mutations dans le gène CAV3 (localisé sur le chromosome 3), codant la cavéoline, protéine du sarcolemme • Présence inconstant du phénomène de rippling musculaire.

Myopathie distale avec déficit en myotiline
• Maladie autosomique dominante • Due à des mutations dans le gène MYOT (localisé sur le chromosome 5), codant la myotiline, protéine sarcomérique de la strie Z, se liant à l’alpha-actinine dans les muscles striés et cardiaque • Classée parmi les myopathies myofibrillaires.

Prise en charge
• Conseil génétique • Kinésithérapie pour maintenir au mieux la souplesse des articulations • Appareillage, notamment releveur du pied • Éventuellement, aides techniques pour assurer la meilleure autonomie possible.
MYOPATHIES MITOCHONDRIALES

ORPHA 254854

Maladies génétiques dues à un dysfonctionnement de la chaîne respiratoire mitochondriale.

- Les mitochondries sont les “centrales énergétiques” de la cellule, qui en contient plusieurs centaines, voire plusieurs milliers • N’importe quelle cellule de l’organisme, n’importe quel organe peut être touché • Les tissus qui nécessitent le plus d’énergie pour fonctionner tels que le muscle squelettique, le muscle cardiaque et le système nerveux central sont les premiers et les plus sèvèrement atteints lors des dysfonctionnements de la chaîne respiratoire • La transmission des myopathies mitochondriales est complexe : généralement la transmission est sur le mode mendélien (gènes situés dans le noyau / ADN nucléaire), autosomique récessif ou autosomique dominant selon le cas • Cependant, pour certaines formes, la transmission est de type maternel (gènes localisés dans les mitochondries / ADN mitochondrial), les mitochondries ne sont en principe transmises que par la mère • Nombreuses formes cliniques en fonction du territoire atteint • Myopathies débutant dès la petite enfance ou à l’âge adulte. Manifestations cliniques très variables • Évolution variable selon la sévérité de la maladie • Elles comportent notamment les syndromes de MELAS, de MERRF et de Kearns-Sayre.

- **Le syndrome de MELAS** (ORPHA 550 – MIM 540000) (**mitochondrial myopathy, encephalopathy, lactic acidosis, and stroke-like episodes**) associe Myopathie mitochondriale, Encéphalopathie, Acidose lactique et des tableaux neurologiques aigus ressemblant à des accidents ischémiques cérébraux.

- **Le syndrome de MERRF** (ORPHA 551 – MIM 545000) (**myoclonic epilepsy with ragged red fibers ou épilepsie myoclonique avec fibres musculaires rouges déchique-**
Principales maladies neuromusculaires

SAVOIR & COMPRENDRE

FICHE TECHNIQUE

Principales maladies neuromusculaires

- Les maladies neuromusculaires (NM) associent une myopathie, une épilepsie myoclonique progressive, une ataxie et une surdité.
- **Le syndrome de Kearns-Sayre** (ORPHA 480 - MIM 530000) associe des troubles de l’oculomotricité, des troubles de l’équilibre, une atteinte de la rétine et des troubles de conduction cardiaque nécessitant la pose d’un pacemaker.
- **Chez l’enfant** : atteinte des muscles (hypotonie, acidose lactique) • Très fréquemment, symptômes regroupés en syndromes avec atteinte du cerveau, du foie, des reins ou du cœur • Évolution sévère possible : atteinte cérébrale (troubles de l’équilibre, épilepsie, paralysie) • Difficulté à se nourrir et troubles de déglutition.
- **Chez l’adulte** : le plus souvent, myalgies, intolérance à l’effort • Ophtalmopégie externe progressive et ptosis avec ou sans atteinte musculaire des membres • Évolution le plus souvent lente.

Prise en charge

- Un diagnostic suffisamment précoce permet de mettre en route des traitements par co-enzyme Q ou par certaines vitamines, mais les résultats sont inconstants • Surveillance et traitement symptomatique selon l’atteinte • Kinésithérapie adaptée • Dispositif anti-ptosis • Appareillage • Aides techniques pour compenser les incapacités fonctionnelles • Ré-entraînement à l’effort • Aménager des temps de repos.

MYOPATHIES MYOFIBRILLAIRES

ORPHA 593

Groupe hétérogène de maladies génétiques rares, autosomiques dominantes ou autosomiques récessives. Caractérisées par l’accumulation de matériel protéique dans les myofibrilles et des anomalies des filaments intermédiaires (filaments du cytosquelette).

- Le terme "myopathie myofibrillaire" est un concept histologique qui regroupe plusieurs myopathies caractérisées par une altération structurelle des myofibrilles, associée à une accumulation anormale de protéines provenant de leur dégradation • Huit gènes sont identifiés à ce jour • La myofibrille, formée par les myofilaments, est le support de la contraction musculaire ; elle est reliée...
à la membrane plasmique par les filaments intermédiaires qui permettent à la cellule musculaire d’avoir une certaine élasticité sans se rompre • Les filaments intermédiaires sont constitués de complexes protéiques qui jouent un rôle fondamental dans la résistance cellulaire et contribuent à l’intégrité细胞ulaire • Les filaments les plus importants sont constitués de desmine • D’autres filaments, comme la vimentine, la nestine ou la synémine peuvent aussi être exprimés dans certains muscles • Début, le plus souvent, en fin d’adolescence ou à l’âge adulte • Faiblesse musculaire proximale (épaules et cuisses) ou distale (mains et pieds) • Atteinte cardiaque fréquente, parfois inaugurale, avec ou sans atteinte des muscles squelettiques et/ou des muscles respiratoires, et/ou des muscles pharyngés • Possible neuropathie périphérique associée.

Desminopathie
ORPHA 98909 - MIM 601419
• Due à des mutations du gène DES (localisé sur le chromosome 2), codant la desmine, protéine constitutive d’un réseau de filaments intermédiaires protégeant l’intégrité structurale et fonctionnelle des myofibrilles lors des stress mécaniques • Les mutations du gène DES entraînent un changement de structure pouvant conduire à la désorganisation et à l’agrégation des filaments • En l’absence de mutations, les filaments de desmine peuvent aussi être désorganisés, du fait d’interactions avec d’autres protéines mutées telles que l’alpha-B cristalline ou la plectine.
• Signes cliniques variables en fonction du type et de la localisation de la mutation • Débute souvent à l’âge de jeune adulte par une faiblesse progressive des muscles squelettiques proximaux et distaux • Souvent associée à une cardiomyopathie avec insuffisance respiratoire • Importance d’un diagnostic précoce du fait de la fréquence et de la sévérité de l’atteinte cardiaque.

Zaspopathie
ORPHA 98912 - MIM 605906
• Due à des mutations du gène ZASP (localisé sur le chromosome 10) codant une protéine du disque Z • Allélique de la myopathie distale autosomique dominante de type Markesbery- Griggs, décrite dans quelques familles en Finlande, France et Espagne • Début vers 30-40 ans • Faiblesse progressive et variable des muscles de la loge tibiale antérieure de la jambe • Les mutations du gène ZASP ont été identifiées dans quelques familles en France, Allemagne, Royaume-Uni et USA.

Alpha-B cristallinopathie
ORPHA 98910 - MIM 608810
• Due à des mutations du gène CRYAB (localisé sur le chromosome 11), codant la protéine alpha-B cristalline, une protéine chaperonne nécessaire à la stabilisation de la desmine • Une cataracte précoce y est souvent associée.

Autres formes
• Dues à des mutations :
 - du gène MYOT (ORPHA 98911 - MIM 609200), localisé sur le chromosome 5, codant la myotiline, une protéine du disque Z impliquée dans l’assemblage des myofibrilles ;
 - du gène FLNC (ORPHA 171445 - MIM 609524), localisé sur le chromosome 7, codant la filamine C, une protéine du cytosquelette ;
 - du gène BAG3 (ORPHA 199340 - MIM 612954), localisé sur le chromosome 10, codant une protéine anti-apoptotique ;
 - du gène SEPN1 (ORPHA 84132 - MIM 602771), localisé sur le chromosome 1, codant la sélénoprotéine N1, glycoprotéine associée aux membranes du réticulum endoplasmique.
Prise en charge
- Conseil génétique
- Kinésithérapie adaptée
- Surveillance de la fonction cardiaque
- Pose d’un pacemaker
- Surveillance de la fonction respiratoire
- Compensations des incapacités motrices par des aides techniques pour assurer la meilleure autonomie possible (appareillage releveur du pied, canne, fauteuil roulant électrique, informatique...).

Prévalence des maladies neuromusculaires
- En épidémiologie, l’incidence rapporte le nombre de nouveaux cas d’une pathologie observés pendant une période donnée. La prévalence s’exprime généralement en «nombre de personnes pour 100 000 personnes par année», afin de permettre des comparaisons entre les populations et dans le temps (Insee).
- Les chiffres de prévalence publiés dans cette "Fiche Technique Savoir et Comprendre" concernent l’Europe et sont extraits de : “Les Cahiers d’Orphanet - Série Maladies Rares - Prévalence des maladies rares : Données bibliographiques” (Mai 2014). Orphanet a réalisé une étude systématique de la littérature afin d’estimer la prévalence des maladies rares en Europe. Ces estimations fournissent des indications sur la prévalence mais ne peuvent être tenues comme absolument exactes. Cette prévalence est calculée :
 - pour les maladies qui n’apparaissent qu’à la naissance : prévalence = incidence à la naissance x (espérance de vie des malades/espérance de vie de la population française (78 ans) prise comme référence pour l’espérance de vie de la population générale).
 - pour les autres maladies : prévalence = incidence x durée moyenne de la maladie.

SYNDROMES MYASTHÉNIQUES congénitaux (SMC)

Maladies génétiques, dues à des anomalies des protéines de la jonction neuromusculaire, caractérisées par un défaut congénital de la transmission nerveuse au niveau de la jonction neuromusculaire. La prévalence serait de 0,75 pour 100 000.

- Début habituellement dès la naissance ou dans les premiers mois de vie
- Existence de formes révélées à l’âge adulte
- Fatigabilité anormale due à une faiblesse musculaire localisée ou généralisée, accentuée à l’effort
- Troubles oculaires (ptosis uni ou bilatéral souvent asymétrique, diplopie) et troubles “bulbaires” (fausses routes, voix nasonnée, fatigabilité de la mâchoire au cours du repas)
- Fluctuation de l’atteinte musculaire : aggravation en fin de journée ou à l’effort, variabilité d’un jour à l’autre
- Évolution variable selon le syndrome : par à-coups, progressive, peu évolutive ou encore amélioration avec le temps
- Récupération possible sous traitement adapté
- On distingue trois types de SMC selon que le défaut est situé en amont, au niveau ou en aval de la jonction neuromusculaire (synapse), entraînant respectivement des troubles pré-synaptiques, synaptiques et post-synaptiques.
Syndrome myasthénique congénital pré-synaptique
ORPHA 98914 - MIM 254210
• Syndrome myasthénique congénital à apnée épisodique ou myasthénie infantile familiale • Autosomique récessif, dû à une anomalie du gène *CHAT* (localisé sur le chromosome 10), codant la choline acétyltransférase ; défaut dans la production de l’acétylcholine qui traduit et transmet la commande motrice du nerf au muscle, ou manque de vésicules présynaptiques permettant de la stocker ; s’améliore en règle générale dans l’enfance • Le risque d’apnées conditionne le pronostic.

Syndromes myasthéniques congénitaux synaptiques
Déficit en acétylcholinestérase (ORPHA 98915 - MIM 603034)
• Autosomique récessif, dû à une mutation dans le gène *COLQ* (localisé sur le chromosome 3), codant le collagène Q qui permet l’ancrage de l’acétylcholinestérase à la jonction neuromusculaire • L’acétylcholinestérase est une enzyme dont la fonction est de dégrader l’acétylcholine libérée dans la fente synaptique • En l’absence de cette protéine, défaut de dégradation de l’acétylcholine prolongeant de façon excessive l’interaction de l’acétylcholine avec ses récepteurs.

Déficit en laminine β2
• Autosomique récessive • Dû à une mutation dans le gène *LAMB2* (localisé sur le chromosome 3), codant la chaîne β2 de la laminine.

Déficit en agrine (ORPHA 590 - MIM 254300)
• Autosomique récessive • Dû à une mutation dans le gène *AGRN* (localisé sur le chromosome 1), codant l’agrine, composant de certaines lames basales et qui joue un rôle dans l’agrégation du récepteur de l’acétylcholine.

Syndromes myasthéniques congénitaux post-synaptiques
• Les plus fréquents • Dus à des mutations du récepteur de l’acétylcholine (RACH), réduisant le nombre ou affectant la fonction du canal ionique du RACH (allongement ou raccourcissement du temps d’ouverture du canal).

Syndrome du canal lent autosomique dominant (ORPHA 98913 - MIM 601462) et syndrome du canal rapide autosomique récessif (ORPHA 98913 – MIM 608930)
• Dus à des mutations dans les gènes *CHRNA1, CHRN1B, CHRND, CHRNA* (localisés respectivement sur les chromosomes 2, 17, 2, 17), codant les différentes sous-unités (alpha, beta, delta et epsilon) du récepteur de l’acétylcholine.

Déficit en récepteur de l’acétylcholine (ORPHA 98913 – MIM 608931)
• Autosomique récessif • Dû à des mutations :
 - des gènes *CHRNE, CHRN1B, CHRND, CHRNA1* (localisés respectivement sur les chromosomes 17, 17, 2, 2) codant les sous-unités ε, β, δ, α du récepteur de l’acétylcholine ;

Déficit en rapsyne (ORPHA 98913 – MIM608931)
• Autosomique récessive • Dû à une mutation dans le gène *RAPSN* (localisé sur le chromosome 11), codant la rapsyne, protéine associée aux récepteurs de l’acétylcholine ;

Déficit en DOK-7 (ORPHA 590 – MIM 254300)
• Autosomique récessive • Dû à une mutation dans le gène *DOK7* (localisé sur le chromosome 4), codant la protéine cytoplasmique DOK-7, intervenant dans la maturation des synapses neuromusculaires;

Déficit en MUSK (ORPHA 98913 – MIM 608931)
• Autosomique récessive • Dû à une mutation dans le gène *MUSK* (localisé sur le chromosome 9), codant MUSK, récepteur tyrosine-kinase spécifique du muscle, jouant un rôle important dans le développement et la stabilité de la membrane musculaire ;

Déficit du canal sodium musculaire NaV1.4 (ORPHA 98913 – MIM 614198)
• Autosomique récessive • Dû à une mutation dans le gène *SCN4A* (localisé sur le chromosome 17), codant la sous-unité α du canal sodium musculaire, canal ionique membranaire ;

Déficit en GFPT1
• Autosomique récessive • Dû à une mutation dans le gène *GFPT1* (localisé sur le
chromosome 2), codant la glutamine fructose-6-phosphate amidotransférase, rôle dans la production de glucosamine-6-phosphate pour la synthèse des glycoprotéines, glycolipides et protéoglycans ;

Déficit en plectine
- Autosomique récessive • Dû à une mutation dans le *gène PLEC1* (localisé sur le chromosome 8), codant la plectine, protéine membranaire d’ancrage du cytosquelette ;

Déficit en DPAGT1
- Autosomique récessive • Dû à une mutation dans le *gène DPAGT1* (localisé sur le chromosome 11), codant une enzyme impliquée dans la synthèse des glycoprotéines.

SMC liés à la voie de glycosylation liée à l’asparagine
- Autosomiques récessives • Dûs à des mutations dans les *gènes ALG2* et *ALG14* (localisés respectivement dans les chromosomes 9 et 1).

Prise en charge
- Les traitements anti-cholinesthérasiques sont rarement efficaces dans les SMC mais doivent être essayés • Certains SMC répondent bien au salbutamol • Conseil génétique • Kinésithérapie adaptée et personnalisée • Assistance respiratoire dans les formes sévères, notamment chez l’enfant.
INDEX DES MALADIES

A
- Acétylcholinestérase (déficit en).................. 51
- Acyl CoA déshydrogénase (déficit en)........ 34
- Adynamie épisodique de Gamstorp 12
- Alpha-B cristallinopathie......................... 49
- Alpha-dystroglycanopathies....................... 17
- Alpha-sarcoglycanopathies....................... 21
- Amylopectinose..................................... 33
- Amyotrophie spinale................................ 11, 12
- Andersen (Maladie d’)............................ 33
- Bâtonnets (myopathie congénitale avec)........ 41
- B-sarcoglycanopathie............................... 21
- Becker (Dystrophie musculaire de).............. 30
- Becker (Myotonie congénitale de)............... 13
- Calpainopathie.................................... 21
- Canal lent (Syndrome du).......................... 51
- Canalopathie musculaire......................... 12, 13
- Canal rapide (Syndrome du)...................... 51
- Carnitine (déficit en)............................... 34, 35
- Carnitine-palmitoyl transférase de type II (déficit en).. 34
- Centronucléaire (myopathie congénitale)....... 42
- Charcot-Marie-Tooth 24, 35, 36, 37
- CMT : voir Maladies de Charcot-Marie-Tooth 24, 35, 36, 37
- Colonne raide (syndrome de la).................. 16
- Cores centraux (myopathie congénitale avec).... 41
- Cori (Maladie de).................................... 32
- Cristallinopathie (Alpha-B)....................... 49
- D-sarcoglycanopathie............................... 21
- Dermatomyosite..................................... 38
- Desminopathie....................................... 49
- DMOP : voir Dystrophie musculaire ocuropathyngée.. 27
- Duchenne (dystrophie musculaire de) 29, 30
- Dysferlinopathie : voir Dystrophies musculaires des ceintures 19, 20, 21
- Dysferlinopathie.................................... 29
- Dysferlinopathie.................................... 14
- Dysferlinopathie des ceintures 21, 22, 23, 24, 25
- Dysferlinopathie facio-scaphulo-humérale 26
- Dysferlinopathie ocuropathyngée 27
- Dysferlinopathie myotonique..................... 27, 28, 29
- Dysferlinopathie.................................... 29
- Emyr-Dreifuss (dystrophie musculaire d’)...... 19, 24
- Enzyme branchante (déficit en).................. 33
- Enzyme débranchante (déficit en)................ 32
- Eulenport (Myotonie d’)........................... 14
- F
- Fibrosynlasie ossifiante progressive............. 31
- FOP... 31
- Forbes (Maladie d’)................................. 32
- FSH : voir Dystrophie facio-scaphulo-humérale . 26
- Fukuyama (Dystrophie musculaire congénitale de type).......................... 17
- γ-sarcoglycanopathie............................... 21
- Gamstorp (Adynamie épisodique de)............ 12
- Glycogénose musculaire............................ 31
- Kearns-Sayre (Syndrome de) 47, 48
- Kugelberg-Welander (Maladie de).............. 11
- Laing (Myopathy distale de type).................. 43, 45
- Laminopathie ... 16
- LARGE (DMC avec mutation du gène) 7, 14, 17, 18
- LGMD : voir dystrophie musculaire des ceintures 19, 20, 21, 22, 23, 24, 25
- Lipidose musculaire 34
- M
- Markesbery-Griggs (Myopathy distale de type).... 45
- Mc Ardle (Maladie de)............................... 33
- MEB : voir syndrome muscle-œil-cerveau 42
- MELAS (syndrome de)............................... 47
- Merosine (Dystrophie musculaire avec déficit en).. 15
- MERRF (syndrome de).............................. 47
- Miyoshi (Myopathy de).............................. 21, 43, 44
- Multiminicores (Myopathy congénitale avec)..... 42
- Muscle-œil-cerveau (syndrome)............... 17
- Myasthenia gravis : voir Myasthénie auto-immune 39
- Myasthénie auto-immune.......................... 39
- Myasthénique congénital (syndrome)50,51,53
- Myopathie à inclusions autosomique récessive (IBM2).......................... 45
- Myopathie avec cores centraux 41
- Myopathie cen tronucléaire........................ 42
- Myopathie congénitale............................. 10, 41, 42, 43
- Myopathie distale 43, 44, 45, 46
- Myopathie mitochondriale 47
- Myopathie myofibrillaire........................... 48
- Myopathie myotubulaire............................ 42
- Myosite à inclusions 38
- Myotonie chondrodystrophique 13
- Myotonie congénitale 13
- Myotubulaire (Myopathy congénitale) 42
- N
- NEM 1 à NEM 7 41
- Nemaline myopathies............................... 41
- Nonaka (Myopathy distale de type)............. 45
- P
- Paralyse périodique hypokaliémique 12
- Paramytonie d’Eulenport.......................... 14
- Phosphofructokinase (déficit en)............... 32, 33
- Phosphorylase (déficit en)........................ 33
- Polymyosite .. 38
- Pompe (Maladie de)................................. 31
- PROMM : voir Dystrophie myotonique de type 2 .. 29
- R
- Récepteur de l’acétylcholine (déficit en) 51
- RYR1 (myopathies associées à)..................... 41, 42
- S
- Sarcoglycanopathie................................. 21
- Schwartz-Jampel (Syndrome de)................ 13
- Selénoopathie .. 16
- SMA (Spinal Muscular Atrophy) : voir Amyotrophies spinales.......................... 11
- Steinert (dystrophie myotonique de)............ 27, 28, 29
- Syndrome de la colonne raide (Rigid spine syndrome).......................... 16
- Syndrome de Walker-Warburg 17
- Syndrome du canal lent............................ 51
- Syndrome du canal rapide......................... 51
- Syndrome MEB ou syndrome Muscle-Eye-Brain .. 17
- Syndrome myasthénique congénital 50, 51, 52
- Tarui (Maladie de).................................. 33
- Thomsen (Myopathy congénitale de)............ 13
- Titinopathie .. 44
- U
- Udd (Dystrophie musculaire tibiale de type)........ 27, 28, 29
- Ullrich (Syndrome d’).............................. 44
- V
- VLCAD (déficit en) 35
- Von Eulenport (Para myotonie de).............. 14
- W
- Walker-Warburg (Syndrome de)............... 17, 18, 22
- Welander (Myopathy distale de type) 11, 45
- Werdnig-Hoffmann (Maladie de)............... 11
- Westphal (Maladie de)............................. 12
- Z
- Zaspopathie .. 49

AFM-Téléthon | Janvier 2015 | 53
INDEX DES GÈNES

| A | AARS ..37 |
| ACTA1 ..41 |
| ACVR1 ...31 |
| AGL ..32 |
| AGRN ..51 |
| ALG2 ..52 |
| ALG14 ..52 |
| ANO5 ...22, 44 |

| B | BAG3 ...49 |
| BIN1 ...42 |

| C | CAPN3 ..21 |
| CAV3 ...24, 46 |
| CFL2 ...41 |
| CHAT ..51 |
| CHRNA1 ..51 |
| CHRNA1 ...51 |
| CHRNA2 ..51 |
| CHRN3 ...51 |
| CHRN4 ...51 |
| CHRN5 ...51 |

| D | COL6A1 ...14, 16 |
| COL6A2 ...14, 16 |
| COL6A3 ...14, 16 |
| COLQ ..51 |
| CRYAB ...49 |
| Cx32 ..37 |

| E | DAG1 ..23 |
| DES ...23, 25, 49 |
| DMD ...29, 30 |
| DMPK ..27, 28 |
| DNAJB6 ..24 |
| DNM2 ..37, 42, 46 |
| DOK7 ..51 |
| DPAGT1 ...52 |
| DUX4 ..26 |
| DYNC1H1 ...37 |
| DYSF ..21, 44 |

| F | FCMD ...17 |
| FGD4 ..36 |
| FHL1 ..43 |
| FIG4 ..36 |

| G | GAA ..23, 32 |
| GARS ...36 |
| GBE1 ..33 |
| GDAP1 ...36, 37 |
| GFPT1 ...51 |
| GMPPB ...23 |
| GNE ..45 |

| H | HNRPD1 ..25 |
| HSPB1 ...36 |
| HSPB8 ...37 |
| HSPG2 ...13 |

| I | I5PD ...14, 23 |
| ITGA7 ..16 |

| K | KBTBD13 ...41 |
| KIF1B ...36 |
| KLHL9 ...46 |

| L | LAMA2 ..14, 15 |
| LAMB2 ...51 |
| LARGE ..7, 14, 17, 18 |
| LIMS2 ...24 |
| LITAF ...36 |
| LMNA ...16, 19, 24, 36 |
| LRSAM1 ...37 |

| M | MATR3 ...46 |
| MFN2 ...36 |
| MPZ ..36, 37 |
| MTM1 ...42 |
| MTMR2 ...36 |
| MTMR14 ...42 |
| MUSK ...51 |
| MYH7 ..43, 45 |
| MYOT ...24, 46, 49 |

| N | NDRG1 ..36 |
| NEB ..41, 46 |
| NEFL ...36 |

| P | PABP2 ...27 |
| PABPN1 ..27 |
| PFKM ...33 |
| PLEC ...23, 52 |
| PMP22 ...36 |
| POMGNT1 ..14, 23 |
| POMT1 ...14, 17, 22 |
| POMT2 ...14, 18, 22 |
| PRPS1 ...37 |
| PRX ...36 |
| PYGM ...33 |

| R | RAB7 ...36 |
| RAP5N ...51 |
| RYR1 ...41, 42 |

| S | SBF2 ...36 |
| SCN4A ...12, 14 |
| SEPN1 ...16, 42, 49 |
| SGCA ...21 |
| SGCB ...21 |
| SGCD ...21 |
| SGCG ...21 |
| SH3TC2 ...36 |
| SMCHD1 ..26 |
| SMN1 ...11 |

| T | TCAP ...21 |
| TIA1 ...45 |
| TNNT1 ...41 |
| TNPO3 ...25 |
| TPM2 ...41 |
| TPM3 ...41 |
| TRAPPC11 ..23 |
| TRIM32 ...21 |
| TRPV4 ...36 |
| TTN ...22, 44 |

| V | VCP ...46 |

| Y | YARS ..37 |

| Z | ZASP ..45, 49 |
| ZNF9 ...27, 29 |
INDEX DES PROTÉINES

A	Acétylcholinestérase (déficit en)	51
B	actine	7, 8, 30, 41, 46
	ACVR1	31
	Acyl-CoA déshydrogénase	35
	agrine	18, 39, 51
	alanyl-t-ARN synthétase	37
	alpha-actine	41
	alpha-B-crystalline	49
	alpha-dystroglycane	14, 15, 17, 18, 22
	alpha-glucosidase acide	32
	alpha-tropomyosine	41
	amphiphysine	42
	anoctamine	22, 43, 44
	ARNt-glycyl synthétase	36
C	BAG3	49
	bêta-tropomyosine	41
	BTB/Kelch	41
D	calpain 3	21
	canal chlore	13
	canal sodium	12, 14, 51
	carnitine	4, 34, 35
	carnitine-palmitoyl transférase II	34
	cavéoline 3	7, 24
	chaîne respiratoire mitochondriale	47
	cofilin-2	41
	collagène 6	7, 14, 16
	collagène Q	51
	connexine 32	37
	CPT II	34, 35
E	desmine	7, 23, 25, 49
	dihydropyridines	12
	DMPK	27, 28
	DOK-7	51
	DPAGT1	52
	dynamine	24, 37, 42, 46
	dynéine	37
	dysferline	4, 7, 21, 43, 44
	dystrophine	7, 8, 17, 18, 21, 29, 30
F	EGR2	36
	émerine	7, 19
	épimérase	45
	FHL1	43
	filamine C	46, 49
	FKRP	7, 14, 15, 16, 18, 22
	frabine	36
	fukutine	7, 15, 17, 22
G	GDAP1	36, 37
	GDP-mannose pyrophosphorylase B	23
H	HSPB1	36
	HSPB8	37
	intégrine alpha-7	16
	isoprenoïde synthétase	23
K	Kelch-like homologue 9	46
	kinésine 1B	36
L	lamines A/C	7, 16, 19, 24, 36
	laminine 2	16, 18
	laminine alpha-2	7, 15, 22
	laminine beta-2	51
	LIM2	24
	LitAF	36
M	maltase acide	32
	mérosine	2, 14, 15, 22
	mitofusine	36
	MPZ	36, 37
	MuSK	39, 40
	myosine	4, 7, 8, 43, 45
	myotubularine	4, 7, 24, 46, 49
N	NDRG1	36
	nébuline	7, 41, 46
	NEFL	36
O	O-mannose beta-1, 2N-acétylgluco- somanyl-transférase	17
	O-mannosyl transférase 1	17, 22
	O-mannosyl transférase 2	22
P	PABPN1	27
	périauxine	36
	perlecan	13
	phosphatase (phosphatidyl-inositol biphosphate)	36
	phosphofructokinase	33
	phosphorylase	33
	plectine	23, 49, 52
	PMP-22	36
R	RAB7	36
	rapsyne	51
	riboflavine	35
	ryanodine	41
S	sarcoglycane (α, β, δ, γ)	7, 21
	SBF2	36
	sélenoprotéine N1	49
	SH3	36
	SMN	11
T	téléthonine	7, 21
	TIA1	45
	titine	7, 22, 44
	TPR	36
	transportine 3	25
	TRAPP	23
	tropomyosine	7, 8, 41
	troponine T	41
	tyrosine-kinase	39, 51
U	UDP-N-acétylglicosamine α2-épimérase valosine	45
Z	ZASP	45, 49
	ZNF9	27, 29
Publications médico-scientifiques de l’AFM-Téléthon, rédigées et validées par une équipe de rédacteurs spécialisés (PDF téléchargeables à Espace Médecin / Chercheur > Publications)

www.myobase.org
Base documentaire dédiée aux maladies neuromusculaires, éditée par le service documentation de l’AFM-Téléthon

Fiches Techniques Savoir & Comprendre, AFM-Téléthon
- Polymyosite pure, 2010.
- Dermatomyosite pure, 2010.
- Canalopathies musculaires, 2010.
- Paromyotonie congénitale, 2010.
- Paralysies périodiques, 2010.